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Abstract We present research-in-progress aimed at developing a 
sensory recognition system with good performance in sparse 
training contexts. The system is a machine learning model, 
structured after a proposed neural architecture of early stage 
object recognition by humans. It stores representations in 
parallel systems that mimic associative and declarative memory 
systems. We present mathematical formulations of the 
underlying system of storage and apply this to the problem of 
vowel recognition by infants. The stored representation makes 
use of the distance between the formant frequencies of vowels, 
as analog magnitudes, rather than their absolute acoustic 
valuations. Our formulation allows for a learning strategy that is 
both neurally plausible and computationally tractable.The 
resulting system can be used in any environment that requires the 
system itself to recognize invariant properties of objects, visual 
or acoustic. 
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1 Introduction 
 
Neural networks (deep learning) represent the state of the art in current artificial 
intelligence applications. They dominate in the fields of visual and aural perception, 
even if some of their shortcomings have proven to be pervasive. 
 
One of these shortcomings is that they require extensive training in order to 
accommodate variations of a stimulus. Perception AI systems typically have great 
difficulty detecting objects under transformations such as rotation, scaling and color 
changes, or of objects that are partially hidden or obscured by other objects. Human 
perception is hardly affected by either affine transformations or partial obscurity of 
objects. 
 
Two of the architectural traits of the human brain that make it especially competent 
in fast object detection are the hierarchical architecture of the brain (Hawkins et al., 
2019) and the specific division of labor between episodic and associative memory 
systems(Poggio & Anselmi, 2016). It is assumed that these systems build partial 
representations that are invariant for spatial transformations or partial obscurity 
(“invariants”). At different layers of the hierarchical structure, these objects are 
represented as imprecise approximations, of objects. 
 
The overall goal is to develop a model that describes how infants learn to distinguish 
the sounds of their mother language(s) from foreign ones. A previous study 
(Vallabha et al., 2007) uses an Expectation-Maximization based approach 
(parametric) and a topography based approach (nonparametric) to learn the specific 
spaces of English and Japanese vowels. At the heart of their approach is the notion 
that some probability distribution is an adequate description of the amount of 
acoustic energy that characterizes each individual vowel. As long as the distributions 
are sufficiently distinct, software can learn to distinguish vowels after learning to 
decode the speech signal into an acoustic profile. 
 
This study presents work-in-progress to develop the computational architecture for 
a neural perception system that mimics the way in which human brains can learn 
such distributional distinctions as invariant representations of sounds and then use 
transformations, in a similar way as affine transformations in the visual domain, to 
facilitate recognition. 
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Systems that employ invariants in general require far less training than conventional 
neural systems, and are especially robust to detect stimuli with representations that 
vary to a large degree (Dupoux, 2018). 
 
1.1 The analog properties of auditory stimuli 
 
The perception of sounds involves the determination of aspects of the stimulus. One 
aspect that is used to discriminate sounds is the distribution of energy over the 
spectrum of the frequencies that together form the sound. In particular vowel 
sounds are well distinguishable based on their differences in fundamental frequency 
(F0) and other local spectral peaks (formamts) (F1 and F2). Vowel production shows 
variation between individual speakers. Vowel recognition is based on the relative 
difference between F0, F1 and F2 rather than on their absolute values. 
 
The recognition of vowels requires the comparison between the magnitudes of the 
spectral energy at different formant positions. The neural system to represent 
magnitudes is usually modeled as a Analog Magnitude Accumulator (AM, Whalen et 
al., 1999) a process by which each events are enumerated or represented as an 
impulse of activation from the nervous system. The representation of a magnitude 
through this system is an approximation of the total number, with some margins for 
noise and error. Analog Magnitudes are subject to the so-called magnitude and distance 
effects (Dehaene, 1997; Flombaum et al., 2005). 
 
It may be meaningful for a speaker to produce sounds in a particular part of their 
range, for example to indicate prominence, segmentation boundaries (Ladd, 2008) 
or information structure (Wennerstrom, 2001). When a speaker raises or lowers the 
pitch (F0), all other formants change as well. It is the distance between formants that 
determines which vowel is perceived. This distance must be large enough for 
speakers to be able to tell the formants apart. This is captured by the notion of “just-
noticeable difference interval” (JNI), which has been studied for different kinds of 
stimuli. It is often assumed that the Weber-Fechner’s law of psychophysics governs 
the function that predicts when two stimuli are distinct enough to be judged 
different. Applied to formants, the Weber-Fechner law expresses that our ability to 
detect a difference between two formant values depends on the base pitch height 
itself (Weber’s law), and that the relationship between stimulus difference and 
discriminability is logarithmic (Fechner’s law). Interpreted in this domain: the JNI is 
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greater for pitches higher in the spectrum than for pitches lower in the spectrum, 
and best plotted on a logarithmic scale. 
 
Both human infants and human adults can generate numerosity estimates for up to 
three AM-sets in parallel (Halberda et al., 2006; Zosh et al., 2007), which at least in 
theory would enable an infant in the very earliest stage of language learning to be 
able to compare the quantities involved with vowel discrimination. 
 

2 General architecture 
 
As the general computational architecture to model the analog magnitudes necessary 
for vowel discrimination, we follow the general proposal of cortical organization 
detailed in Hawkins et al. (2019), the representational model of invariants by Poggio 
& Anselmi (2016) and the strategies for storing approximations from Leibo et al. 
(2015). 
 
Hubel and Wiesel proposed a distinction between simple and complex cells 
(henceforth: S-,  respectively C-cells)  where  C-cells pool S-cells  in a network. One  
C-cell with its S-cells is a Hubel-Wiesel module (HW-module). The response of a C-
cell that pools S-cells to a stimulus x is denoted as µk(x) for the k-th element of the 
signature of the concept. An HW-module features as a computational structure in 
most current theories of neural networks, including convolutional, HMAX and 
Nearest Neighbors networks. Concepts as stored in the brain are referred to as 
templates (τk) with as actual manifestations a set of k signatures. 
 

2.1 Cortical columns store invariants 
 
An HW-layer consists of one to many HW-modules, and the hierarchical 
organisation of HW-layers is called an HW-architecture. In the human cortex there 
are six of such layers, with the bottom one (denoted V1 for modules involved in 
visual perception) connected to the sensorimotor areas of the brain, and the highest 
one (IT) assumed to be the most abstract. Any form of cognition involves an 
interplay between the higher and the lower levels. 
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An invariant representation can be modeled as a particular activation pattern of 
different HW-modules. Invariant representations are encoded in the brain as early 
as in the lowest HW-layers. Because these layers are activated within the first 100ms 
of the ventral stream’s exposure to a stimulus, feedback from the cortex cannot play 
a role yet in recognition. There simply isn’t  enough  time for synapses to go 
roundtrip from the lowest to the highest level of the cortex in 100ms. We model in 
a computational way that early stage of recognition, assuming that the higher levels 
that do receive feedback from the top levels (or other HW-modules) are organized 
in a similar way. 
 
Invariant representation for a stimulus at that low level requires the generation of 
representations of the perceived stimulus under a known set of  transformations (in 
the auditory domain: pitch variations, voice quality, loudness, duration). 
 
An HW-module may be considered a data structure that encodes a signature of τk. 
Under that assumption, it  has a set of values and operations to access and update 
the atoms of data that the particular HW-module store. Learning means: a sequence 
of  inserts or updates in the HW-module, given a particular activation caused by a 
stimulus. Each of the K HW-modules stores data D that corresponds with the 
signature of template τk. 
 
In the brain,  HW-modules are composed of neural cells, interconnected through 
dendrites that connect to axons. Computationally, if we denote the number of 
potential connections as n, a dendritic segment is represented as a binary vector D = 
[b0.., bn−1] where a non- zero value bi represents a synaptic connection to presynaptic 
cell i and s = D indicates the number of synapses on that segment. At a given 
moment, 20-300 synapses (s) are typically active, over a much larger number of 
potential connections. A possible representation of the synaptic configuration of 
HW-modules is by sparse distributed representations (Ahmad & Hawkins, 2016). 
 
If an HW-module is seen as a data storage unit, its insert and access operations can 
be given as in Eqs. 1 and 2, (cf. Leibo et al., 2015). Object categorization is then 
done by finding the µk that minimizes the loss function. 
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INSERT(Dk, t) : Dk ← Dk ∪ {t}.    (1) 
QUERY(Dk, t) : μk(x) ← max ⟨x, t⟩   (2)  
 

Biologically, the INSERT-operation of Eq. 1 is implausible. Brains do not directly 
store information as a database does, but rather, we argue, as an approximation of 
the strength of an aspect of the stimulus. In this view, the brain stores an 
approximation of properties such as size, length, temporal structure etc. as the 
components of an invariant representation of objects in the real world. Rather than 
storing a discrete number, an analog magnitude is stored, in the form of a subpart 
of the joint activation of a subpart of a cortical column. 
 
In our computational model, the formulation of the INSERT operation as proposed 
by Leibo et al. (2015) is used, which formulates two separate operations. 
 
In the first INSERT strategy, the best rank-r approximation of a matrix is computed. 
The set of templates (the invariant properties of vowel sounds) is first expressed as 
a matrix (Tk), which represents the specific activation patterns of HW-modules. The 
matrix is then reduced using Singular Value Decomposition (SVD) and Principal 
Component Analysis (PCA).  The INSERT operation is then defined as in Eq. 3, 
the concatenation of Tk and new information (t) resulting from a stimulus. 
 
The second INSERT strategy uses random projections (Bingham & Mannila, 2001) 
(cf. Eq.4). A random projection is a projection of matrix X (with dimensions n × m) 
to X’ (with dimensions n × o, where 
 
o < m per the Johnson-Lindenstrauss lemma) by the transform over a matrix with 
random values. Dimensionality reduction using random projections is 
computationally less intensive but does not result in an outcome with correlated 
candidates. Hence, storage is quicker but the relations between templates necessary 
for invariance are lost. 
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INSERT(Dk, t): Dk  ←[Tk | t] V′ with U′Σ′V ′ = [Tk | t]   (3) 
INSERT(Dk, t): Dk  ← [Tk | t] [R | r] with U′Σ′V ′ = [Tk | t] 
where r = random vector s. th. [R|r] is orthogonal    (4) 
 

The two INSERT operations can account for two different ways of storing 
representations. The first INSERT (dimensionality reduction through SVD/PCA) 
is slower for insertions but does retain any correlations to other templates and is 
thus a good candidate for the type of associative memory that is required for 
invariant representation in the cortical areas. The second INSERT works without 
reference to any other template, and is computationally simpler - the biological 
counterpart could be the hippocampus which stores episodic memory. Because this 
project is limited to the earliest stages of cortical processing, before any synaptic 
pathway can be excited or inhibited for feedback, the first INSERT (Eq. 3) is the 
only considered for implementation. 
 

2.2 Acquisition of priors 
 
In a machine learning system, invariance to auditory or visual translations (such as 
scale, du- ration, pitch height) can be built up by simply memorizing examples. The 
core of the computational model is to construct a system that does not rely on such 
extensive memorization. The algorithm we use has been adapted from that used for 
visual processing as proposed by Poggio and Anselmi (2016): 
 

1. Developmental stage 
a. For each of K isolated templates (cf. τk), memorize a 

sequence of Λ of |G| frames corresponding to the sound 
pattern transformations (gi = 1, ...,|G|). This may include 
the absence of change which characterizes prolonged vowel 
duration. The sequence of frames is observed over some 
time interval. 

b. Repeat for each of K templates. 
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2. Online determination of invariant signature for a single stimulus from 
a new object. 

a. For each tk compute the dot product of the stimulus with 
each of the |G| transformations in Λg. 

b. For each k compute a probability distribution of the resulting 
values. 

c. The signature is the set of K cumulative distributions. It is 
stored using the INSERT operations defined in Section 2.1. 

 
A template stores the approximate distance between formants and their values. 
When a stimulus has duration, such as a vowel sound, the transformations learned 
in the develop- mental stage may be the absence of change. This approach captures 
both the invariance (by applying known transformations in a generative way) and 
the analog nature (by using dimensionality reduction) of approximation of the 
transformation results. In terms of a vowel sound, JNI distances between F0, F1, 
etc. are computed in the generative step, but acceptable deviations from these are 
accounted for by the proposed approximated storage. A logical extension of the 
generative part is by positing a two-stage approach, in which the first stage ensures 
that a final signature is composed by HW-modules by pooling over invariant 
signatures, and the second stage permits specialized transformations that are object 
specific. 
 
3 Results 
 
The presented approach is implemented in R. Neural activations are inserted after 
PCA, modeled as a binary sparse distributed representation (SDR). The advantage 
of such a distributed representation is that synaptic pathways across HW-modules 
can be encoded without positing a separate neural level for each different HW-layer. 
The SVD/PCA models magnitudes and their analog nature. 
 
Because the implementation follows the HW-architecture as discussed in Section 2, 
it mirrors a biologically plausible neural architecture for perception learning. We are 
currently in the process of extensive experimentation with real data. 
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The INSERT-operations using matrices and dimension reduction techniques allow 
for a plausible way to model the approximateness of properties of concepts. 
Learning at INSERT takes place by application of Oja’s rule, which is a generalized 
form of PCA using Hebbian learning (Oja, 1982). 
 
Although auditory perception is a relatively straightforward task, the implementation 
can easily be adapted to other problems that are typically a challenge for training-
heavy Machine Learning. Such tasks are for example the fast recognition of 
previously unseen objects or of objects that may be presented after spatial 
transformations such as scaling, rotation. 
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