

SEMIOTICS OF SYNTHETIC MEDIA

GIUDITTA BASSANO,¹ ANDREW MCINTYRE,²
PIERO POLIDORO¹

¹ LUMSA University, Department of Human Sciences, Rome, Italy
g.bassano@lumsa.it, p.polidoro@lumsa.it

² University of Amsterdam, Department of Media Studies, Amsterdam, the Netherlands
a.mcintyre@uva.nl

This chapter proposes a dual framework for interpreting synthetic media by coupling generative semiotics (enunciation, plastic/figurative isotopies, anchorage, uncanny cues) with Actor-Network Theory (ANT) mapping of production, circulation, and reception. We first situate synthetic images within longer genealogies of manipulation while stressing contemporary discontinuities in scale, speed, access, and political stakes. We then articulate how meaning emerges at two levels: internal textual organization and the socio-technical networks of datasets, models, platforms, policies, and audiences. Four case studies (satire/meme, advertising resurrection, televisual “interview,” participatory grotesque) demonstrate how contracts of veridiction shift across genres and contexts. Finally, we introduce a semiotically grounded taxonomy and a reception matrix oriented to political prevention and media-education strategies, privileging capacity-building over mere detection.

DOI
[https://doi.org/
10.18690/um.feri.2.2026.3](https://doi.org/10.18690/um.feri.2.2026.3)

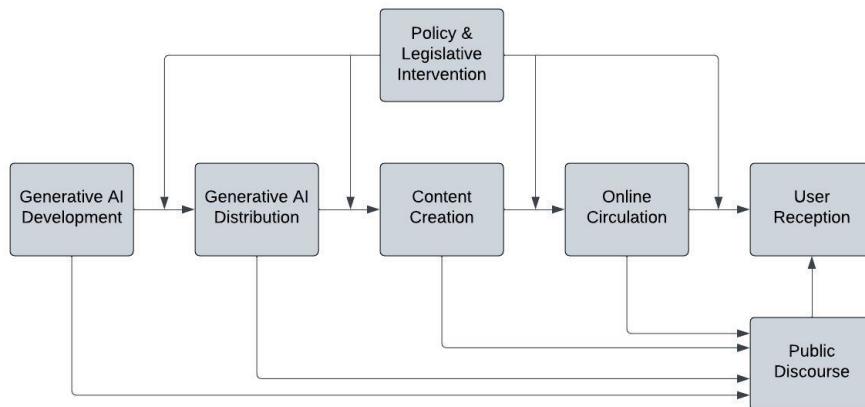
ISBN
978-961-299-109-8

Keywords:
synthetic media,
semiotics,
actor-network theory,
disinformation,
prevention

University of Manitoba Press

1 Digital Media and Actor-Network Theory

Countering deepfakes requires moving beyond technical detection to the narrative coherence and networked conditions that lend synthetic images persuasive force. We therefore combine an external ANT approach - mapping actors from developers to regulators and users - with an internal semiotic approach - tracking isotopies, enunciative positioning, anchorage, and uncanny signals. A genealogical detour clarifies what is continuous with legacy manipulation and what is genuinely new in today's platformed ecologies. The subsequent case synopses function as paradigms, showing how genre, circulation, and audience competence modulate interpretation. On this basis, Section 5 advances a taxonomy of fakeness (expression vs. content) and a four-situation reception model (contract, accident, unmasking, deception) to inform education-first preventive policies.


Before considering the semiotic analysis of deepfakes and synthetic media in their own right, it is important to first consider the broader social environment from which this content emerges and in which it circulates. Such an environment encompasses the development of generative AI systems, considers the distribution of synthetic media across online platforms, and is shaped by policy and legislation. To fully elaborate on the diversity and complexity of this social environment, it is necessary to move beyond traditional socio-technical systems theory (Ropohl 1999), as this cannot fully account for the deep social integration of generative AI systems. Rather, we might better describe this environment through actor-network theory (ANT). Where traditional socio-technical systems theory is somewhat limited to specific systems or contexts in which humans and technology are closely linked (e.g., factories, offices, IT systems), ANT enables SOLARIS to consider a far broader network of social actors involved in the production, dissemination, and reception of synthetic content (e.g., social media users, policy institutions). Furthermore, ANT provides a bridge between socio-technical systems theory and semiotic analysis by highlighting how AI systems contribute to the production of knowledge and how other social actors influence this production. This short section provides only a broad overview of the ANT analysis of the social environment around synthetic media (Bisconti et al., 2024, McIntyre et al., 2025).

Closely associated with the work of theorists such as Bruno Latour, John Law, and Michel Callon, Actor-Network Theory (ANT) is a radical departure from traditional sociology. Rather than focusing on rigid social structures and abstract social forces, ANT conceptualizes any social activity as a dynamic and continually changing network of relationships between different social actors. Importantly, within ANT, a social actor does not solely refer to human beings but further includes a wide range of material entities, including objects, animals, texts, technologies, and institutions. All of these disparate entities are understood to interact with one another within a flat, non-hierarchical network such that every actor, be they human or non-human, can influence the network's dynamics. As these interactions are fluid, the boundaries and exact composition of a social network are never fixed. ANT is not intended as a strict or consistent theoretical framework but, rather, a flexible and evolving approach with its own ambiguities and limitations that even scholars like Latour, Law, and Callon have openly acknowledged (Callon, 1984; Latour, 2007; Law, 1992). That being said, ANT's focus on materiality in social interactions and its inclusion of non-human entities as active social participants means it presents a valuable framework considering the social function of generative AI systems. Of particular interest to SOLARIS' discussion of deepfakes and democracy, ANT allows us to map the vast and diverse network of social actors involved in the production, distribution, and reception of harmful AI-generated content online. This mapping furthermore enables us to understand how socio-political values are introduced and spread throughout this network. As such, we may begin to identify points of policy or legislative intervention to combat democratic risks, which will be discussed in later chapters.

When an internet user views synthetic content online, a particular network of interconnected social actors is formed. This network is expansive and complex, with numerous social actors involved and all linked together by precarious relations. While it is impossible to fully represent such a network, we can develop a simplified version (shown in Figures 1 and 2) in order to identify the key social actors at play, to elaborate on their different characteristics, and to illustrate how these actors are linked within the network. It is important to note that these diagrams are not intended as representations of real-world systems but rather as analytical instruments or provisional maps that allow us to trace associations. These associations have been reconstructed through an ANT-inspired systematic mapping. First, human and non-human actors were identified through a survey and analysis of documentation and sources, including academic literature, policy reports, regulatory texts, journalistic

coverage, and publicly available material produced by AI companies. Secondly, the socio-technical chains that link these actors were reconstructed by following the actors themselves and mapping associations from development through circulation to reception.

Where Figure 3.1 provides a basic overview of the different groupings of social actors and how they are typically understood to interact with one another, Figure 3.2 unpacks these groups in more detail. These groupings include social actors involved in the development and distribution of a generative AI system, the creation of synthetic content using these systems, the circulation of this content in online spaces, the user reception of the content, the various policy and legislative interventions, and the broader public discourse surrounding synthetic content. The arrows shown in Figures 3.1 and 3.2 indicate only a possible pipeline of interactions with each social actor impacting upon the next in the sequence. A brief explanation of each stage is provided below.

Figure 3.1: A general approximation of the significant groups of social actors involved in the production

Source: Bisconti et al., 2024.

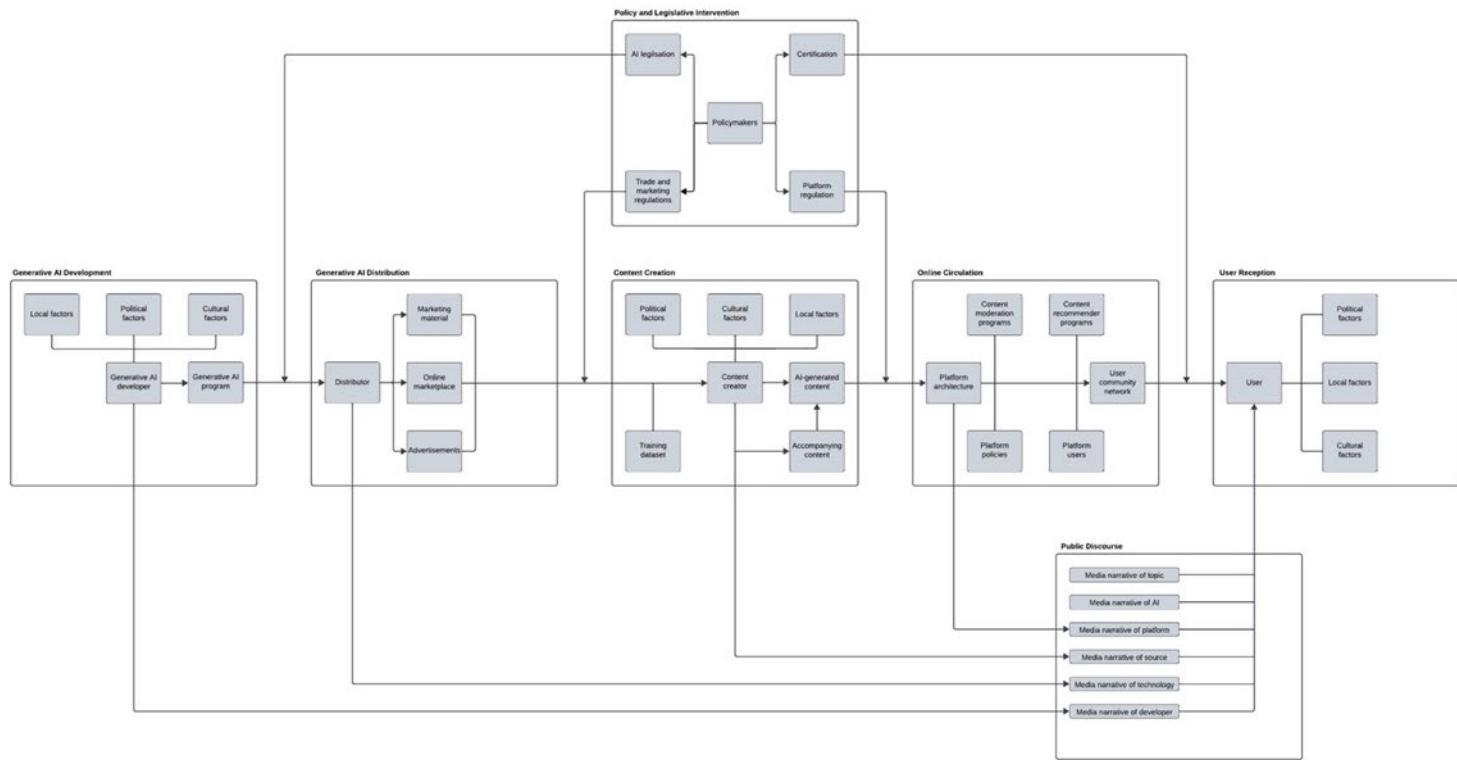


Figure 3.2: An expanded view of the network of social actors involved in the production, circulation and reception of AI-generated content online
 Source: Bisconti et al., 2024.

First and foremost, the development of generative AI systems involves diverse actors (e.g., government institutions, private companies, research centres, independent programmers). The design of such technologies is greatly influenced by these actors' motivations (e.g., profit, innovation, public service), access to resources (e.g., researchers, funds, equipment), regulatory compliance (e.g., AI Act, DSA), and adherence to ethical standards (e.g., OECD AI Principles). Furthermore, there are also political, cultural, and local factors that influence these actors and their development processes. Design choices might be shaped through political pressures and public opinion, dominant cultural values, and/or community relations and links to industrial societies. The specific characteristics of these social actors are important to consider as they determine the technical design of an AI system (e.g., datasets, architecture, accuracy, limitations), which, in turn, might lead to bias, inaccuracy, and censorship in the synthetic content generated by these systems. These have socio-political problems. To address this, there are ongoing efforts to introduce value-sensitive design and global initiatives (e.g., UNESCO, NIST) seeking to embed human rights and ethical principles in AI systems at the design stage.

Those social actors involved in the marketing, advertising, and distribution of generative AI systems then further shape how these technologies are perceived and used through promotional materials, advertisements, and visual presentation in online marketplaces. Advertisements and marketing strategies influence who adopts these technologies and for what purposes by encouraging specific uses (e.g., entertainment, pornography) or by appealing to particular user groups (e.g., influencers, programmers). Such practices often embed socio-political values; for example, promoting generative AI technologies for non-consensual pornography perpetuates misogynistic ideas. Meanwhile, hype and exaggeration may misrepresent the technology's capabilities (e.g., reliability, objectivity), thus enabling uncritical or harmful use.

When considering the factors influencing the creation and publishing of synthetic content, it is necessary to account for the content creator's motivations, the kind of synthetic content, and any accompanying material. Whether individuals, groups or institutions, synthetic content creators publish content for certain purposes, including entertainment or disinformation. Their actions are influenced by political, cultural, and local contexts. For example, cultural values (e.g., patriarchal norms) can normalize and encourage content creators to produce exploitative content like deepfake pornography, while unstable or polarized political environments might

incentivize political manipulation. The publication of such content itself frames audience interpretation of it as popular, socially acceptable, true or untrue. Deepfakes serve various ends: politically motivated disinformation, ideological reinforcement, or visualization of historical, speculative or political narratives. Such content can undermine institutions, perpetuate biases or reshape public discourse through persuasive synthetic media.

When considering the intended targets of deepfake content, social environments shape their vulnerability and representation. Targets may be individuals, groups, objects, events, or hypothetical scenarios, each carrying characteristics such as demographic profile, societal status, or political significance. Political figures and events are especially at risk. Cultural contexts also influence vulnerability. Celebrities or culturally significant people are attractive targets due to their symbolic value, while misogynistic cultures make women especially susceptible to sexual deepfakes. Deepfakes targeting political figures often misrepresent individuals and their associated organizations and ideologies, amplifying disinformation and undermining broader political movements or institutions.

Social media platforms play a significant role in mediating the dissemination of deepfake content, focusing on their architecture, policies, automated systems, and user interactions. Platform architecture shapes how content is shared and received through features such as newsfeeds, hashtags, trending sections, likes, and comment threads. These design choices frame deepfakes in ways that may obscure their artificiality or amplify their reach. Recommendation algorithms further personalize content delivery, often reinforcing homophily by exposing users to material aligned with their existing interests and values. In the case of deepfakes, this can normalize misleading or polarizing material.

Platform policies and content moderation systems govern which forms of content are allowed, flagged, masked, or removed. Automated moderation programs filter vast amounts of data but are shaped by technical limitations and policy interpretation. These practices intersect with national and international regulations, such as the EU AI Act's transparency requirements for labelling AI-generated content.

Users themselves drive circulation: liking, commenting, and sharing increase visibility, while user networks (e.g., family, friends, colleagues) determine trust and influence. Even users aware of inauthenticity may promote deepfakes for political or ideological reasons.

Finally, social media networks foster “neighbourhoods” or echo chambers, where people cluster by shared identity or opinion. Within these spaces, deepfakes and disinformation can spread quickly with little critique, fuelling polarization and extremism. Efforts to curb harmful content through censorship or labelling may reduce its spread, raise free speech concerns, and push users toward less regulated platforms.

It is not enough to consider synthetic media in isolation. Synthetic content is embedded within wider media ecosystems and shaped by prevailing narratives that influence how it is received and shared. These narratives can relate to the content creator, target, developer, platform, AI technology, or the topic itself. For instance, the perceived trustworthiness, political affiliation, or expertise of a creator can frame how viewers interpret a deepfake. Similarly, targets often carry media personas established through appearances and statements; if a deepfake aligns with or contradicts this persona, it may appear more credible or cause greater reputational damage.

Narratives about AI technology also matter. Some media emphasize deepfakes’ inaccuracy, encouraging uncritical acceptance, while others highlight their sophistication, fostering scepticism. This duality impacts the perception of harmful deepfakes and the uptake of pro-democratic applications. Developer and platform identities shape interpretation too: trustworthy brands or platforms with strong moderation may lend legitimacy, while weakly moderated spaces foster doubt.

Broader media coverage of topics featured in deepfakes, such as political controversies, can amplify their impact. Meanwhile, AI “hype” promoted by developers and media often misrepresents capabilities, portraying technologies as neutral and objective. News organizations play a dual role, sometimes debunking disinformation, and especially when under-resourced, unintentionally perpetuating it.

Across all these different social actors and interactions, there may be policy and regulatory interventions in the production, circulation, and reception of deepfake content. Key actors include government officials, regulators, legislation, and certification mechanisms. Policymakers' political affiliations and status shape the form and implementation of policies. AI-specific legislation, such as the EU AI Act, introduces transparency requirements mandating that AI-generated content be labelled, with further laws expected as risks emerge. Trade and marketing regulations govern how AI products are promoted, preventing misleading claims, while platform regulations control how deepfakes circulate, particularly harmful material like pornography.

Certification adds another layer, with fact-checkers labelling false or misleading content, while "pre-bunking" initiatives raise awareness of manipulative techniques, fostering media literacy. Globally, three spheres dominate regulation: the US emphasizes market-driven self-regulation, China enforces state-driven control embedding political values, and the EU adopts a rights-based, transparency-focused model. The EU AI Act exemplifies this, with strict labelling and oversight requirements. Its influence is expected to spread internationally through the "Brussels Effect," setting global standards for ethical AI governance.

Finally, when considering the user themselves and how they receive deepfake content, it is necessary to understand how their personal characteristics and social environments shape their perception. Individual factors include demographics, education, media literacy, knowledge of AI, political affiliation, and societal roles (e.g., journalists, academics, or officials) which can make some users more influential or vulnerable to manipulation.

User environments also play a key role. Political factors, including local policies, pressure groups, and prevailing public sentiments, influence susceptibility, while cultural factors (e.g., ethnic, religious, national, or institutional) shape how content is interpreted. For example, journalists may prioritize sensational content to attract audiences, affecting dissemination.

Many users approach deepfakes uncritically due to the novelty and rapid development of AI, combined with marketing and media hype portraying technologies as objective or authoritative. This can lead users to accept AI-generated

content as truthful and adopt the political ideas it conveys, particularly regarding complex or nuanced issues, increasing the risk of manipulation and misinformation.

Ultimately, adopting an ANT perspective enables us to understand GenAI not merely as a set of technologies but as active social actors. This approach reveals the complex social environment in which these technologies operate and how this environment shapes the production and circulation of content, as well as the semiotic meanings embedded within it. By foregrounding these networks of influence, we gain a richer understanding of how GenAI influences social and cultural discourse and values. This ANT mapping functions as an overarching analysis against which a more focused semiotic analysis of specific synthetic images is conducted.

This chapter adopts a dual analytical lens. Internally, each synthetic image is examined through a generative semiotic grid (plastic and figurative isotopies, enunciative configurations, anchorage, uncanny cues). Externally, an Actor-Network Theory mapping identifies the socio-technical actors involved in the image's production, circulation, and reception. The two procedures are applied in parallel, allowing us to link textual micro-coherence to the broader networks of platforms, models, norms, and audiences that shape meaning.

2 Continuities and Discontinuities between Legacy and Synthetic Media

The analysis of *synthetic media* cannot ignore a comparison with previous media traditions. To understand the scope of the transformations underway, it is necessary to distinguish the lines of continuity from the breaks introduced by generative artificial intelligence. Visual manipulation is certainly not a recent invention. As early as the 19th century, photomontage (Floch, 1986) enabled the recombination of image portions to achieve illusionistic or satirical effects. In the 20th century, *airbrushing* and photo editing practices consolidated an imaginary world in which images were never a guarantee of absolute truth. Similarly, political satire has long employed caricature and distortion to challenge the authority of leaders. *Synthetic media* are therefore part of a long genealogy of forms of alteration, spanning photography, cinema, and television. The use of digital CGI techniques in cinema during the 1990s and 2000s can also be considered a precursor: The reconstruction of impossible scenarios and non-existent characters has accustomed viewers to

suspend their disbelief and accept simulated worlds as an integral part of collective visual culture.

What has changed radically with *synthetic media* is the speed, scale, and social diffusion of these practices. Whereas in the past manipulation techniques were the preserve of specialists, today accessible tools such as Midjourney, DALL-E, or Veo allow anyone to generate photorealistic images and videos with a simple text prompt. The emergence of the *prosumer*, the user-producer, marks a qualitative leap in the democratization of visual manipulation. Another discontinuity concerns circulation. Legacy media were based on centralized distribution logic (newspapers, television, cinema), while *synthetic media* spread through digital platforms that reward virality, remixing, and participation. Editorial institutions no longer regulate the normativity of public discourse, but by recommendation algorithms and online communities. Another critical aspect in this regard is related to intentionality. Just think, for example, that photo editing in the second half of the 20th century was a practice linked to aesthetic dominance.

In most cases, retouching was equivalent to “perfecting” and “beautifying”. Finally, the political stakes are higher. While traditional satire could be easily recognized as such, today a deepfake can be confused with an authentic document and have immediate consequences in terms of reputation, credibility, and even international security. The difficulty of distinguishing between true and false undermines social trust, shifting the focus from objective evidence to subjective beliefs. In summary, *synthetic media* represent a continuation of existing manipulation practices, but they introduce radical discontinuities in terms of accessibility, speed, scale of dissemination, and political impact. Semiotics, in dialogue with the social sciences, must therefore address the tradition of visual falsification and the new ecologies of visibility produced by digital platforms.

3 Semiotic Frameworks for the Analysis of Visual Texts

To understand *synthetic media*, we need to construct a theoretical framework capable of bringing together the internal mechanisms of signification and the socio-technical chains that make its production and circulation possible. In this sense, the convergence between generative semiotics and Actor-Network Theory (ANT) proves particularly fruitful. Methodologically, this chapter combines a visual-semiotic analysis of synthetic images with an Actor-Network Theory mapping of the

socio-technical actors that shape their production, circulation, and reception. Semiotics, in the tradition of Greimasian semiotics (Greimas, 1976; Greimas & Courtés, 1979, 1986), offers tools for describing the internal coherence of visual texts. Each image is organized by figurative and plastic isotopies, which establish fields of meaning and orient perception. Figurative isotopies refer to “coherent” and even redundant recurrences of recognisable elements: these recurrences allow us to evaluate, for example, the degree of verisimilitude of a photographic background in relation to what is seen in the foreground.

When we talk about plastic isotopies, we are referring to the consistency between formal elements, such as colours, lines, lighting, and spatial distribution. For example, in an AI-generated photo, we can notice that some of the contours of an object or body part are “blurred” and thus understand that it is an artificial image. In this way, many elements contribute to producing a reality effect: in artificial photos, this can be unmasked more or less easily depending on the observer’s interpretative skills.

Figure 3.3: In this portrait generated by ChatGPT, a very small detail on the wrist shows an unnatural edge, inconsistent with the normal perception of a human wrist fold.

Source: copyright Giuditta Bassano.

Furthermore, enunciative configurations, as markers of point of view, deictic strategies, and signals of the author’s presence/absence contribute to building a communicative contract with the user (Dondero, 2020). In synthetic media, these

elements take on even greater significance because their opacity or ambiguity can be easily concealed. For example, there are seemingly credible nature videos circulating in which two nocturnal animals of different species appear to be playing together; however, in reality, they belong to species that do not live in the same climate or on the same continent. The verisimilitude of such videos stems from the fact that they “simulate” the typical aesthetics of infrared LED footage from camera traps used in documentaries.

Figure 3.4: The Grant's zebra and the Canadian beaver do not live on the same continent in any way.

Source: Photo generated by ChatGPT, prompt by Giuditta Bassano.

Finally, there is also a phenomenological-semiotic problem: namely, the way in which our perception seeks to “find” a principle of humanity in objects, in moving shapes, and in toys - consider the phenomenon of *pareidolia* (Eco, 2010). A case in point is the so-called *uncanny valley* (Leone, 2021): when a synthetic face is almost realistic, but not quite, the observer recognizes the artificial nature of the face, but at the same time continues to receive an intermittent impression of humanity. Thus, a semiotics of the uncanny (Kress & Leeuwen, 2020; Leone & Gramigna, 2021) allows us to analyse these micro-clues of non-humanity as inconsistent isotopies that

undermine the effect of verisimilitude. The phenomenon is not limited to physiognomy but can emerge in environmental details and bodily postures.

Semiotic analysis, therefore, does not seek to technically unmask the algorithm, but rather to reconstruct how signs of artificiality translate into meaning for different audiences. At the same time, ANT allows us to place these texts within broader socio-technical networks. Indeed, a deepfake never exists in isolation: it is the product of complex chains that include generative model developers, training datasets, distribution platforms, content creators, moderation policies, fact-checkers, and end users. The analysis of a synthetic visual text must, therefore, be articulated on two complementary levels: on the one hand, the internal semiotic organization, and on the other, the translations and mediations carried out by non-human agents (software, algorithms, interfaces) and human agents (authors, institutions, user communities). Verbal anchoring, already described by Roland Barthes in relation to photography, assumes a crucial role here (Leone, 2021). In social media, synthetic images are almost always accompanied by texts: descriptions, hashtags, comments, and captions. These elements not only guide interpretation but can also conceal or reveal the artificial nature of the content. A deepfake declared as parody activates ironic isotopies and is interpreted in a satirical key; the duplicate content, without a label, can be perceived as proof of an event that never happened. The question of anchoring is thus intertwined with the algorithmic logic of visibility and the media normativity of the platform.

4 **Critical Case Studies: Deepfakes and Their Semiotic Implications**

To gain a deep understanding of the cultural and political implications of *synthetic media*, it is not enough to analyse the phenomenon in the abstract: it is necessary to study concrete cases that serve as litmus tests for the transformations taking place.

The four case studies were selected through a paradigmatic sampling logic rather than by representativeness. Each case illuminates a distinct semiotic and socio-technical configuration: (i) Pope Balenciaga exemplifies hybrid satire and ambiguous veridiction; (ii) Lola Flores foregrounds posthumous identity reconstruction and commercial appropriation; (iii) Dalida highlights televisual enunciation and the redefinition of documentary authority; (iv) the Will Smith meme series captures the rapid evolution of synthetic aesthetics from grotesque error to infrastructural realism. These cases were chosen because they activate different combinations of

textual isotopies, uncanny cues, platform dynamics, and actor-network relations, allowing for a comparative framework capable of tracing broader cultural transformations.

4.1 Pope Balenciaga (2023, Midjourney)

The case of the so-called *Pope Balenciaga*, a series of images of the pontiff dressed in a designer white down jacket, generated with Midjourney and circulated online in March 2023, exemplifies the functioning of deepfakes as hybrids between satire and photorealism.

Figure 3.5: One of the most famous artificial images of contemporary times involving Pope Francis.

Source: widely circulated AI-generated image depicting Pope Francis in a white puffer coat.

Internal semiotic analysis:

- Figurative isotopies: the papal white blends with the bright white of the catwalk down jacket; the outfit evokes both ecclesiastical austerity and fashion glamour.
- Plastic isotopies: contrast between the neutral background and the brightness of the garment, which amplifies the effect of hyper-reality.

- Enunciation: the absence of markers of irony within the image generates ambiguity. It is the viral context (memes, ironic comments) that disambiguates.

ANT and socio-technical chain:

- Non-human agents: Midjourney as a platform, a dataset of religious and fashion images.
- Human agents include Reddit and Twitter users who share, journalists who repost, and fact-checkers who clarify the falsehood.
- Effect: oscillation between irony and misinformation, with risks to credibility among visually illiterate audiences.

The case demonstrates how a synthetic image can integrate into a traditional discursive regime (political satire), with its effects amplified by its verisimilitude.

4.2 **Lola Flores for Cruzcampo (2021, hybrid media)**

Cruzcampo's advertising campaign, which digitally resurrects Andalusian singer Lola Flores in 2021, is an example of *media hybridization*: deepfakes, sound archives and advertising editing converge in a commercial product.

Figure 3.6: A frame from the commercial that digitally resurrects the Andalusian star Lola Flores.

Source: screenshot from “Anuncio Cruzcampo Lola Flores 2021 (Spot TV 30s)”, YouTube, JaviTV, January 24 2021.

Internal semiotic analysis:

- Identity isotopies: Flores' reconstructed face becomes a guarantee of authenticity for a message linked to "identidad andaluza" (Andalusian identity).
- Enunciation: the use of the first person ("¿Y tú, sabes quién eres?") creates an effect of proximity that reinforces the emotional impact.
- Uncanny: the body appears alive, but the awareness of the artist's death produces cognitive friction.

ANT and socio-technical chain:

- Non-human agents: face reenactment software, audiovisual archives.
- Human agents include advertising agencies, family heirs (who have given their consent), as well as television and social media audiences.
- Normative dimension: the issue of posthumous consent and the 'delegated responsibility' of the heirs.

This case shows how *synthetic media* can be exploited by the market, transforming cultural memory into an economic resource, with the risk of reducing collective identities to visual commodities.

3.1.1. **Dalida in Hotel du Temps (2022, hybrid media)**

The French television programme *Hotel du Temps*, hosted by Thierry Ardisson, resurrected deceased celebrities (including Dalida) to 'interview' them in the studio using face-swapping and voice-cloning techniques.

Internal semiotic analysis:

- Enunciation: the 'truth contract' typical of television journalism is grafted onto a digital artifice. The television mise en scène simulates a live interview, blurring the genres of documentary, fiction and talk show.
- Uncanny effect: the viewer oscillates between nostalgic fascination and ethical unease.

ANT and socio-technical chain:

- Non-human actants: face swap software and archived video dataset.
- Human actors: Ardisson as author, digital technicians, and traditional television audience.
- Political effect: redefinition of collective memory, risk of 'affective revisionism' (resurrections that rewrite history).

The Dalida case raises profound questions about posthumousness and the use of images as 'heritable assets' in the absence of clear legislation (Bassano & Cerutti, 2024).

4.4 Will Smith Meme (2025, Veo 3)

The “Will Smith eating spaghetti” meme (2023) and the Veo 3 “Will Smith” frame (2025) (Fig. 6. below) encapsulate the accelerated evolution of generative media aesthetics. The grotesque distortion of the first phase and the photorealistic perfection of the second can be seen as sequential stages of the same cultural experiment: the former tests the limits of plausibility through excess, while the latter redefines plausibility itself as the ultimate aesthetic value.

Figure 3.8: The 2023 meta-digital meme Will Smith eating spaghetti becomes, two years later, a temporal anchor for observing an extraordinarily rapid technical evolution.

Source: from the top, screenshot from viral AI-generated deepfake depicting Will Smith eating spaghetti (YouTube 2022, www.youtube.com/watch?v=vbWe5k4fFWE), and screenshot from viral AI-generated deepfake depicting Will Smith eating spaghetti (YouTube 2025, www.youtube.com/@agx_agi).

Figurativeness and isotopies:

In 2023, forms collapse and textures blend: the edible and the human merge into a chaotic visual loop where humour depends on error. In 2025, all plastic elements align - light, texture, colour produce a seamless *reality effect*. The grotesque gives way to the algorithmic normality of lifestyle realism, where perfection itself becomes suspect.

Enunciation and the uncanny:

The 2023 meme was openly parodic, its enunciation collective and self-aware; the Veo 3 image instead speaks as if real, erasing irony and testing the viewer's interpretive vigilance. The uncanny shifts from failure to success: not the deformity of form, but its flawless credibility now unsettles perception.

ANT and socio-technical chain:

From early chaotic engines to Veo 3's multimodal coherence, the generative system evolves from collective play to infrastructural realism. Users move from active co-authors to passive spectators, while platforms reward aesthetic smoothness over disruption. The result is a new threshold of synthetic verisimilitude, where realism itself becomes the message.

Interpretive significance:

Between 2023 and 2025, generative imagery moves from the grotesque to the post-ironic, from visible artifice to imperceptible simulation. What was once laughable for its failure now compels attention for its precision. This shift defines a new mode of spectatorship, grounded not in visual trust but in interpretive literacy – the ability to discern the social and technical networks behind the image.

A comparative reading of the four cases highlights a progressive transformation in the semiotics of synthetic media:

- From irony to transparency: while early cases such as *Pope Balenciaga* relied on ambiguous irony to generate meaning, the *Veo 3 Will Smith* image shows how

hyperrealism now erases the ironic frame, demanding new interpretive vigilance.

- Evolution of the veridiction contract: deepfakes increasingly occupy the grey area between fiction and documentation. The advertising and televisual examples (*Lola Flores*, *Dalida*) demonstrate how synthetic media inherit the authority of their original genres while subtly redefining their truth regimes.
- Ethical and normative complexity: questions of consent, posthumous agency, and delegated authorship move to the foreground, exposing the inadequacy of existing legal and ethical frameworks to manage hybrid human-machine authorship.
- Reconfiguration of participation: from the collective remixing of the 2023 meme to the infrastructural realism of 2025, the human role shifts from playful co-creation to critical spectatorship within algorithmic ecosystems.

Together, these cases map the passage from visible artifice to imperceptible simulation, revealing how deepfakes evolve from cultural anomalies to structural components of media experience. The integration of semiotic analysis and Actor-Network Theory proves essential to understanding this shift, linking textual micro-coherence to the wider networks of production, circulation, and regulation.

5 A Semiotic Framework for Political Prevention

The preceding sections have outlined a theoretical trajectory that moves from the analysis of socio-technical networks (ANT) and media genealogies to the development of a semiotic framework capable of interpreting deepfakes as complex cultural texts. Through this dual perspective – external and internal – it has been shown that synthetic media function not merely as technological devices but as genuine social actors that reshape truth contracts and digital citizenship practices. Section 5 builds on this continuity by proposing an applied interpretive model of deepfakes, translating the preceding theoretical insights into a tool for designing educational policies and interpretive literacy strategies aimed at prevention and democratic resilience. A regulatory intervention should begin with the clearest possible understanding of the subject to be regulated. A helpful way to fix that knowledge is a *taxonomy*: a (more or less) hierarchical set of labels and definitions that lets us relate individual phenomena to broader categories. The act of assigning a single case to a category is called *classification*, and it is always a compromise. On

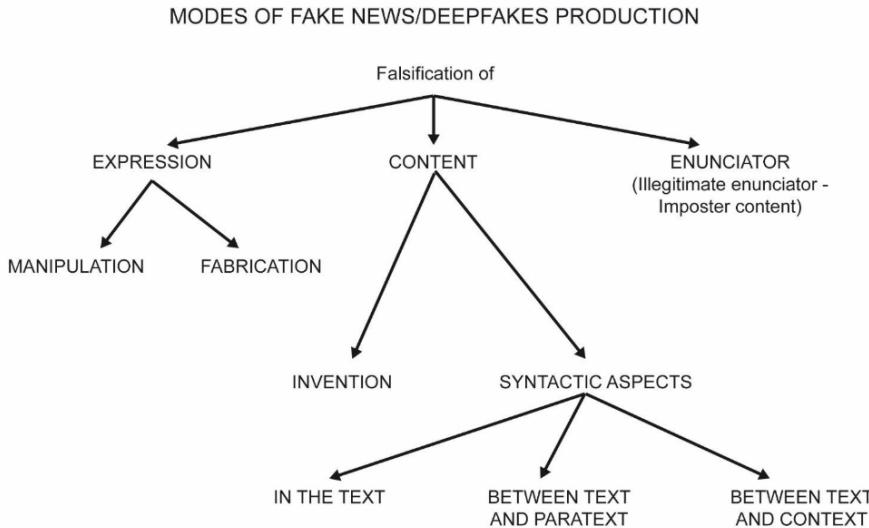
the one hand, we have to downplay (that is, set aside) the case's unique features, which are inevitably lost; on the other, we gain the benefit of placing a single, relatively new phenomenon within a familiar framework that indicates some of its properties (shared with other phenomena) and, ideally, offers practical guidance on how to respond to it.

In this section, then, we aim to give a taxonomic backdrop to the discussion of deepfakes. To do that, we first need to define a few concepts directly or indirectly linked to deepfakes, starting with *fake news* and *post-truth* (Polidoro, 2008).

In short, *post-truth* refers to a supposed shift in contemporary public debate in which emotional factors increasingly outweigh rational ones, and truth matters less than other considerations such as personal or partisan interest. Framed this way, post-truth is a general attitude to truth, and a cultural change located in our present, following the digital revolution. In a post-truth environment, the spread of false reports becomes structural rather than exceptional. Two key terms are *disinformation* (the deliberate spread of false information) and *misinformation* (the unintentional spread of false information that the sender believes to be true). The difference between them lies wholly in the sender's intention to circulate something they know is false. A related expression is *malinformation*: the spread of accurate information with the aim of harming someone (as in gossip). Since malinformation deals with true information, we do not consider it here.

Within this context, *fake news* is central, and part of the deepfake phenomenon can be placed under it. It should make it clear that the label *deepfakes* is misleading, though, because “fakes” suggests something falsified and intentionally produced to deceive. Whereas, as this book has noted repeatedly, not all deepfakes serve this purpose: their synthetic nature can be made explicit, and they can also be used for constructive and positive ends.

The term *fake news* also poses a practical problem: it is an umbrella term that covers many different phenomena. We therefore need to give it an internal structure, namely, a taxonomy of fake news.


The literature offers several attempts at such a taxonomy (Chong and Choy 2020; Jaster and Lanius 2018; Rastogi and Bansal 2022; Tandoc, Lim and Ling 2018; Wardle 2016, 2017), though not many, because attention soon turned to taxonomies

of *classification systems*: the (almost always automated) tools used to identify fake news. For a fuller discussion of taxonomies of fake news, see Polidoro 2025. Here, it is worth noting that existing models suffer from two main limits. First, a few models rely – albeit in different ways – on two dimensions: *facticity* (how close, or rather how far, items are from the truth) and the sender’s *intention* (for example, parody and satire openly distort reality or construct a non-truthful one). The difficulty lies above all in the latter: intention is interesting, but hard to verify. Second, other models lack system: rather than deriving types from clearly defined dimensions (for example, by combining them), they amount to unstructured lists of different phenomena.

To overcome these limits, the SOLARIS project developed two models grounded in semiotics. They have different aims and viewpoints. For further details, see Polidoro 2025.

The aim of the first model is to build a taxonomy of fake news, which also helps identify different kinds of malicious deepfakes. It does not propose new types; instead, it reorganizes them according to a semiotically grounded logic that differs from what is often found in the literature.

According to this model, we first distinguish fake news produced by falsifying the *level of expression* from those produced at the *level of content*. In the former (which includes deepfakes), falsification acts on the *material form* – visual, audio, or otherwise. This may work on pre-existing material (*manipulation*) or start from scratch (*fabrication*). By contrast, working at the content level means we are not falsifying the vehicle of information (the expression), but, in some way, the content it carries. This can happen in two ways. The first is to create an entirely untruthful report from scratch: *invention*. The second is to manipulate content that is partly or wholly true so that it leads to a mistaken reading of reality. Such manipulation may occur within the text (for instance, through misleading adjectives), between the text and its accompanying elements – the *paratext* (for example, giving a truthful report a skewed headline or pairing it with an image that steers the reader to a wrong interpretation), or between the item as a whole (text, title, image, etc.) and the context in which it appears (for example, placing it alongside other items so that it is framed in a particular way). Finally, the falsehood of a news item can depend not just on the falsity of the content, but also on falsifying the *source* (as when a fake television newscast is produced).

Figure 3.9: Graph depicting taxonomic component characterising different modes of fake news/deepfakes production.

Source: copyright Piero Polidoro.

The diagram above shows how these differences fit together. Because many of these aspects can co-exist within one piece of fake news, the types should not be treated as mutually exclusive. The best way to apply the model is therefore a coding sheet on which to note which taxonomic components appear in each individual item.

The second model sets out the different situations one may face when dealing with fake news. It combines two dimensions. The first concerns the sender, but not their intention (which is hard to prove). Rather, it asks whether the text includes markers that make its fabrication explicit – for example, paradoxical cues (as in parody) or technical ones (such as watermarks). The second dimension concerns the recipient's ability to judge the text's truthfulness. This yields four situations:

- **Contract:** the recipient correctly recognizes a text that is explicitly false (for example, realizing they are engaging with parody).
- **Accident:** through inattention or limited literacy, the recipient fails to recognise an explicitly false text and takes it to be true (as happened with Orson Welles's 1938 radio broadcast of War of the Worlds).
- **Unmasking:** the recipient detects the attempt to deceive and unmasks the fake news.

- **Deception:** the fake news succeeds in misleading the recipient.

Contract is not problematic, and *Unmasking* is a case of successful, autonomous debunking. The problematic cases are *Accident* and *Deception*. To limit these, we must adapt different strategies: safeguard measures to avoid the former, and capacity-building to strengthen debunking in the latter.

Table 1: Model showcasing four different fake news scenarios faced by senders and users.

		Sender	
		Explicit fabrication	Implicit fabrication
Receiver	Recognition		
	Lack of recognition	Accident	Deception

Source: copyright Piero Polidoro.

6 Concluding Remarks

Synthetic media are not a mere by-product of technology but a laboratory of veridiction, where boundaries between truth/falsehood and human/artificial are continually renegotiated. A combined semiotics and ANT lens shows that meaning arises from the interplay of textual micro-cues (isotopies, enunciation, anchorage, uncanny) and macro-structures (models, platforms, norms, audiences). The cases confirm that effects depend less on tools than on discursive contracts, networks of actors, and audience competence. Accordingly, prevention should prioritise interpretive capacity-building: semiotic literacy, transparent labelling regimes, and context-aware pedagogy that reduces *accidents* and strengthens *unmasking*, rather than relying solely on detection. The practical instruments proposed in Section 5 - a taxonomy of fakery and a reception matrix seek to offer a shared vocabulary for scholars, educators, and policymakers to design education-led, democracy-supporting responses to synthetic images.

End notes

Giuditta Bassano and Andrew McIntyre conceptualized the chapter and coordinated the writing. Giuditta Bassano wrote the Introduction, the Conclusion, and the following Sections: “Continuities and Discontinuities between Legacy and Synthetic Media”, “Semiotic Frameworks for the Analysis of Visual Texts”, and “Critical Case Studies: Deepfakes and Their Semiotic Implications”. Andrew McIntyre wrote “Digital Media and Actor-Network Theory”, while Piero Polidoro authored the section on “A Semiotic Framework for Political Prevention”. All authors reviewed and approved the final version.

References

Barthes, R. (1964). Rhétorique de l’image. *Communications*, 4(1), 40–51. <https://doi.org/10.3406/comm.1964.1027>

Bassano, G., & Cerutti, M. (2024). Posthumous digital face: A semiotic and legal semiotic perspective. *International Journal for the Semiotics of Law / Revue Internationale de Sémiotique Juridique*, 37(3), 769–791. <https://doi.org/10.1007/s11196-023-10067-2>

Bisconti, P., McIntyre, A., & Russo, F. (2024). Synthetic socio-technical systems: Poiesis as meaning making. *Philosophy & Technology*, 37(3), Article 94. <https://doi.org/10.1007/s13347-024-00778-0>

Callon, M. (1984). Some elements of a sociology of translation: Domestication of the scallops and the fishermen of St Brieuc Bay. *The Sociological Review*, 32(1, Suppl.), 196–233. <https://doi.org/10.1111/j.1467-954X.1984.tb00113.x>

Chong, M., & Choy, M. (2020). An empirically supported taxonomy of misinformation. In K. Dahir & R. Katz (Eds.), *Navigating fake news, alternative facts, and misinformation in a post-truth world* (pp. 117–138). IGI Global. <https://doi.org/10.4018/978-1-7998-2543-2.ch005>

Dondero, M. G. (2020). *The language of images: The forms and the forces*. Springer International Publishing. <https://doi.org/10.1007/978-3-030-52620-7>

Eco, U. (Ed.). (2010). *The limits of interpretation* (1st Midland Book ed.). Indiana University Press.

Floch, J.-M. (1986). *Les formes de l’empreinte: Brandt, Cartier-Bresson, Doisneau, Stieglitz, Strand*. P. Fanlac.

Greimas, A. J. (1976). *Sémiotique et sciences sociales*. Seuil.

Greimas, A. J., & Courtés, J. (1979). *Sémiotique: Dictionnaire raisonné de la théorie du langage*. Hachette.

Greimas, A. J., & Courtés, J. (1986). *Sémiotique. 2: Compléments, débats, propositions*. Hachette.

Jaster, R., & Lanius, D. (2018). What is fake news? *Verus*, 127(2), 207–223. <https://doi.org/10.14649/91352>

Kress, G. R., & van Leeuwen, T. (2020). *Reading images: The grammar of visual design* (3rd ed.). Routledge. <https://doi.org/10.4324/9781003099857>

Latour, B. (2007). *Reassembling the social: An introduction to actor-network-theory* (Paperback ed.). Oxford University Press.

Law, J. (1992). Notes on the theory of the actor-network: Ordering, strategy, and heterogeneity. *Systems Practice*, 5(4), 379–393. <https://doi.org/10.1007/BF01059830>

Leone, M. (2021). *Volti artificiali / Artificial faces*. Lexia, 27, 1–645.

Leone, M., & Gramigna, R. (2021). Special issue: Cultures of the face. *Sign Systems Studies*, 49(3–4).

McIntyre, A., Conover, L., & Russo, F. (2025). A network approach to public trust in generative AI. *Philosophy & Technology*, 38(4), Article 137. <https://doi.org/10.1007/s13347-025-00974-6>

Polidoro, P. (2008). *Che cos’è la semiotica visiva* (1st ed.). Carocci.

Polidoro, P. (2025). Two proposals for a semiotic taxonomy of fake news and deepfakes. *Actes Sémiotiques*, (133). <https://doi.org/10.25965/as.8964>

Rastogi, S., & Bansal, D. (2023). A review on fake news detection 3T’s: Typology, time of detection, taxonomies. *International Journal of Information Security*, 22, 177–212. <https://doi.org/10.1007/s10207-022-00625-3>

Ropohl, G. (1999). Philosophy of socio-technical systems. *Techne: Research in Philosophy and Technology*, 4(3), 186–194. <https://doi.org/10.5840/techne19994311>

Tandoc, E. C., Lim, Z. W., & Ling, R. (2018). Defining “fake news.” *Digital Journalism*, 6(2), 137–153. <https://doi.org/10.1080/21670811.2017.1360143>

Wardle, C. (2016, November 18). 6 types of misinformation circulated this election season. *Columbia Journalism Review*. https://www.cjr.org/tow_center/6_types_election_fake_news.php

Wardle, C. (2017). Fake news: It’s complicated. *First Draft*. <https://firstdraftnews.org/fake-news-complicated/>