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The chapter provides an overview of the technology behind 
deepfakes, describing what a deepfake is and how it is created. The 
chapter is structured around three sections: (i) theoretical 
foundations of artificial intelligence, machine learning, and deep 
learning, (ii) generative models and synthetic data, and (iii) the 
synthetic media toolkit. Firstly, it describes AI evolution, starting 
from the early stages leading up to the latest models that can 
generate data. The latest models are then described, highlighting 
their capabilities and explaining how these models open a wide 
range of opportunities, as well as the concerns regarding the 
generation of highly realistic data that can deceive users, as is the 
case with deepfakes. Finally, knowledge of how the machines learn 
from the data helps in using these tools. A clear understanding of 
the process behind the technology leads to unmasking the illusion 
and understanding how the technology works, enabling informed 
use. 
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1 Theoretical Foundations: Artificial Intelligence, Machine Learning, 

Deep Learning  
 
A “deepfake” is a digital content (i.e., an image, a video, or an audio) modified or 
generated by using artificial intelligence (AI) tools. The term combines two concepts: 
“deep” refers to deep learning, a branch of AI, while “fake” indicates that the 
content has been manipulated or altered in some way. So, to understand deepfakes, 
it is important to first examine the theoretical foundations of AI. 
 
The objective of AI is to create machines capable of performing tasks that typically 
require human intelligence. The journey begins in the 1950s, when pioneers such as 
Alan Turing posed the fundamental question of machine intelligence: “Can 
machines think?” (Epstein et al. 2009). This chapter provides a brief technical 
overview of how the technology born in 1950 has evolved to today's capability of 
creating highly realistic synthetic data content.   
  
The path from Turing's question to today's deepfakes not only regards technological 
advancement, but it is also a fundamental transition in how machines process and 
generate information. In scientific evolution over the last decades, we have seen a 
progression from rule-based systems to machine learning and, finally, to deep neural 
networks. This evolution has led nowadays to models that can generate realistic 
human faces, synthesize speech in any voice, and produce entirely fictional yet 
photorealistic scenarios.  
  
The formal birth of the term “artificial intelligence” took place in 1956, when, during 
a conference, John McCarthy, one of the pioneers of AI, coined the term (McCarthy 
et al. 2006). However, the conceptual foundations were laid earlier by Alan Turing, 
whose 1950 paper “Computing Machinery and Intelligence” introduced the famous 
Turing Test as a benchmark for machine intelligence, posing the question, “Can 
machines think?”  
  
Developing a machine capable of “thinking” is a challenge that extends beyond mere 
technical complexity. It requires sophisticated models, advanced computational 
architectures and, crucially, a profound sense of responsibility. The aim is to create 
systems that can produce high-quality content while adhering to fundamental ethical 
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principles; a balance that is becoming increasingly important as these technologies 
become more powerful and widespread.  
  
To understand how machines learn to replicate human intelligence, Tom Mitchell 
provides a foundational definition of the learning process: “A computer program is 
said to learn from experience E with respect to some class of tasks T and 
performance measure P if its performance at tasks in T, as measured by P, improves 
with experience E” (Mitchell 1997).  
  
Early AI development focused on symbolic AI or knowledge-based systems. These 
systems operated on the principle that intelligence could be replicated through 
explicit rules and logical reasoning. Engineers would interview domain experts, 
codify their knowledge into if-then rules, and create systems that could make 
decisions within structured domains. Due to their rule-based architecture, small 
changes in input could lead to system failures; to operate in a human-like fashion, a 
machine requires learning from experience or adapting to new situations not 
explicitly programmed. Consider image recognition: the exclusive use of standard 
geometric features such as size, colour, and pose is not sufficient for this task, which 
requires a more robust approach. Machine learning has emerged as a solution to 
these limitations, representing a significant advance in the field of artificial 
intelligence. Instead of programming explicit rules, ML enables systems to learn 
patterns from data. The fundamental idea is that human behaviours can be learned 
through data without being specified by a set of rules.   
  
Machine learning comprises three main paradigms:   
 
− Supervised Learning: a machine learning paradigm that involves training 

algorithms on labelled datasets, where each training example consists of an 
input paired with its corresponding correct output (label). The system learns to 
map inputs to desired outputs by analysing these input-output pairs during the 
training phase. Through this process, the algorithm identifies patterns and 
relationships within the data that enable it to make accurate predictions. 
Classification tasks (determining whether an email is spam) and regression 
problems (predicting house prices) are examples of supervised learning. The 
mathematical foundation rests on finding functions that minimize prediction 
errors across training data while generalizing well to unseen examples.   
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− Unsupervised Learning: a machine learning paradigm that addresses the 

challenge of discovering hidden patterns, structures, and relationships within 
data without the guidance of explicit labels or target outputs. Unlike supervised 
learning, these algorithms must identify meaningful patterns just using the input 
data itself, making this approach particularly valuable for exploratory data 
analysis and knowledge discovery. These algorithms might cluster customers 
into market segments, reduce data dimensionality for visualization, or discover 
anomalies in network traffic. Principal Component Analysis (PCA) and k-
means clustering represent classical unsupervised techniques that remain widely 
used today.   

− Reinforcement Learning: a machine learning paradigm that draws inspiration 
from behavioural psychology, where agents learn through trial and error in 
interactive environments. The agent receives rewards or penalties for actions, 
gradually learning optimal strategies to reach a specified goal. This approach 
has produced remarkable successes in game-playing AI, from chess programs 
to AlphaGo's historic victory over human champions.   

 
The early 2000s marked a pivotal transformation in artificial intelligence, driven by 
exponential growth in computational resources and unprecedented access to large 
datasets. This technological convergence enabled the emergence of Deep Learning 
methodologies that fundamentally changed how machines process information. 
Complex neural architectures like Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) demonstrated remarkable capabilities in 
pattern recognition, language understanding, and cross-modal translation tasks that 
had previously been challenging. These networks are made of layers that learn 
patterns from input data to predict outputs.  
 
A salient moment arrived in 2014, with Ian Goodfellow's introduction of Generative 
Adversarial Networks (GANs), establishing the foundation for modern generative 
artificial intelligence (Goodfellow et al. 2014). This breakthrough represented more 
than incremental progress; it introduced an entirely new paradigm for synthetic data 
creation.   
 
The GAN framework operates through an adversarial training process involving two 
competing neural networks. The generator network learns to transform random 
noise into increasingly synthetic content, whether images, audio, or text. Meanwhile, 
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the discriminator network distinguishes whether the content in the input is generated 
or not, acting as a digital detective. This competitive process creates a feedback loop 
where both networks continuously improve: the generator becomes more skilled at 
creating convincing fakes, while the discriminator becomes better at detecting them. 
Eventually, this adversarial process reaches an equilibrium where generated content 
achieves a high level of realism.   
 
However, the most revolutionary advancement in generative AI came with the 2017 
introduction of the Transformer architecture (Vaswani et al. 2017), which 
transformed both natural language processing and artificial intelligence. 
Transformers introduced the attention mechanism, enabling models to dynamically 
focus on relevant input segments during processing. This architecture consists of an 
encoder that builds rich contextual representations through self-attention, and a 
decoder that generates outputs autoregressively by considering both encoded input 
and previously generated tokens. This innovation directly enabled the development 
of GPT models by OpenAI, which demonstrated unprecedented natural language 
capabilities through large-scale pre-training on diverse text corpora, fundamentally 
changing how machines understand and generate human language 
  
The impact of GANs has led to advantages across numerous applications. Beyond 
generating photorealistic synthetic faces of non-existent individuals, these models 
have revolutionized creative industries, enhanced image super-resolution 
techniques, and provided synthetic training data solutions when real datasets are 
limited or prohibitively expensive. GANs essentially established the conceptual 
groundwork for the generative AI revolution, inspiring subsequent innovations 
including diffusion models and transformer-based architectures.  
  
While GANs dominated early generative AI development, diffusion models (Ho et 
al. 2020).  emerged as an alternative, particularly for image synthesis tasks. These 
models employ a fundamentally different approach: rather than direct generation, 
they learn to progressively remove noise from random input through iterative 
refinement steps. This denoising process offers greater training stability and finer 
control over the generation process. Contemporary models like DALL-E (Ramesh 
et al. 2021) and Stable Diffusion (Rombach et al. 2022) exemplify how diffusion 
approaches can produce both artistic and photorealistic imagery with unprecedented 
precision and creative flexibility.  
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2 Generative Models and Synthetic Data 
 
The original GAN, called Vanilla GAN (Goodfellow et al. 2014), marked the 
beginning of adversarial networks. Training GANs is challenging due to technical 
issues such as mode collapse and unstable gradients that cause not high-quality 
output generation, but this model laid the groundwork for the future development 
of GAN architectures. Since the introduction of Vanilla GANs, numerous 
improvements and variations have been proposed to address limitations and expand 
the applicability of GANs. Some of the major advancements include: 
 
− Conditional GANs (cGANs) (Mirza and Osindero 2014) introduced the ability 

to condition the generation process on additional information, such as class 
labels. By conditioning both the generator and discriminator on a desired output 
class, cGANs allowed for greater control over the generated outputs. This was a 
critical advancement in applications like image-to-image translation and text-to-
image generation. 

− Deep Convolutional GAN (DCGAN) (Radford et al. 2016) leveraged 
convolutional neural networks (CNNs) to improve the stability and quality of 
generated images. DCGANs enabled the generation of more detailed and higher-
resolution images by using convolutional layers in both the generator and 
discriminator. This model became a benchmark for image synthesis tasks and 
paved the way for many subsequent GAN models. 

− Wasserstein GAN (WGAN) (Arjovsky et al. 2017) addressed the training 
instability issue by using the Wasserstein distance to measure the difference 
between real and generated data distributions. This led to more stable training 
and better convergence. 

− Progressive GAN (PGAN) (Karras et al. 2018) improved the generation of 
high-resolution images by starting with a low-resolution image and progressively 
increasing the resolution during training. This method helped generate more 
stable and realistic images. 

− CycleGAN (Zhu et al. 2020) introduced the concept of cycle consistency, 
enabling unpaired image-to-image translation. This meant that CycleGANs could 
learn to transform images from one domain to another without needing paired 
training data, making it highly versatile for applications like photo enhancement 
and style transfer. 
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− StyleGAN (Karras et al. 2019) introduced a new way to control the generation 
process by manipulating latent space features to produce human faces. 
StyleGAN's ability to disentangle features like pose, facial expression, and 
hairstyle in the generation process resulted in highly realistic images. StyleGAN2 
(Karras et al. 2020) and StyleGAN3 (Karras et al. 2021) were followed by 
improvements, including better handling of textures and the ability to create 
more coherent images across different resolutions. 

− BigGAN (Brock et al. 2019) enhanced the performance of GANs by training on 
large-scale datasets with higher computational power. BigGANs demonstrated 
the capability of GANs to generate incredibly detailed and high-quality images, 
pushing the boundaries of what GANs could achieve. 

− Self-Attention GAN (SAGAN) (Zhang et al. 2018) introduced self-attention 
mechanisms that allowed the network to focus on relevant parts of an image 
while generating it. This enabled the generation of images with greater structural 
and spatial consistency. 

− DragGAN (Pan et al. 2023) represents a novel approach to interactive image 
manipulation. It enables users to control specific points in an image and drag 
them to target positions, providing precise control over shape, pose, and 
expression. This interactive manipulation method enhances user control in 
generating and editing images. 

 
The evolution of GANs from simple image generation to sophisticated 
manipulation tools marks a critical turning point in synthetic media creation. As 
these models became more powerful and accessible, they enabled a new 
phenomenon that would capture attention: deepfakes. Thanks to their ability to 
generate and modify existing multimedia content with increasingly realistic results, 
the phenomenon of deepfakes has spread widely. Deepfakes are synthetic content 
created through sophisticated artificial intelligence models, particularly GANs and 
diffusion models, which allow for convincing manipulation of videos, images, and 
audio recordings. 
 
This technological capability, while impressive from an engineering perspective, has 
introduced unprecedented challenges. The same algorithms that can enhance 
medical imaging or create innovative art can also fabricate convincing videos of 
public figures saying things they never said, or place individuals in scenarios they 
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never experienced. The democratization of these tools has made synthetic media 
creation accessible beyond academic laboratories, raising fundamental questions 
about truth, authenticity, and the nature of evidence in our digital age. 
 
3 Beyond GANs: The New Wave of Generative Models 
 
While GANs have dominated the field of image synthesis and related tasks for 
almost a decade, other approaches have shown promising results in producing highly 
detailed and controllable outputs. These alternative models have provided new 
perspectives on how generative AI can be approached. 
 
Variational Autoencoders, introduced by Kingma and Welling in 2013 (Kingma and 
Welling 2013), represent one of the earliest and most influential alternatives to 
GANs in the generative modelling landscape. VAEs combine the concepts of 
autoencoders with variational inference, creating a probabilistic framework for 
learning latent representations of data. The architecture consists of two main 
components: an encoder network that maps input data to a probabilistic latent space, 
and a decoder network that reconstructs the original data from latent 
representations. Unlike traditional autoencoders that learn deterministic mappings, 
VAEs learn to encode data into probability distributions in the latent space, typically 
Gaussian distributions characterized by mean and variance parameters. 
 
The key advantage of VAEs lies in their stable training process, which leads to more 
stable and predictable training compared to the adversarial training of GANs. The 
probabilistic nature of VAE latent spaces enables smooth interpolations between 
different data points, making them particularly useful for tasks requiring controlled 
generation and data exploration. However, VAEs also have notable limitations, 
particularly in generating sharp, high-resolution images, where they tend to produce 
somewhat blurry outputs compared to GANs. 
 
The introduction of the Transformer architecture (Vaswani et al. 2017) 
revolutionized natural language processing and opened new possibilities for 
generative modelling across multiple modalities. Originally designed for sequence-
to-sequence tasks, Transformers have proven to be remarkably versatile and 
powerful for generative applications. The self-attention mechanism allows 
Transformers to model long-range dependencies effectively, making them 
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particularly suitable for sequential data generation. Unlike classic methods such as 
RNNs or CNNs, transformers can process entire sequences in parallel and capture 
complex relationships between distant elements. 
 
Most transformer-based generative models work autoregressively, predicting the 
next token in a sequence given all previous tokens. This approach has proven highly 
effective for text, code, and even image generation when images are treated as 
sequences of tokens. The Generative Pre-Trained Transformer (GPT models) are 
language models. These models showed that scaling up transformers with massive 
datasets could lead to emergent capabilities in text generation, reasoning, and even 
multimodal understanding. 
 
Building upon the foundations laid by VAEs and the architectural innovations of 
Transformers, Diffusion Models have emerged as perhaps the most significant 
advancement in generative AI in recent years. These models have achieved 
unprecedented quality in image generation and are rapidly expanding to other 
modalities. Diffusion models work by modelling the process of data generation as 
the reverse of a diffusion process, starting with random noise and gradually 
denoising it through a series of iterative steps to generate data that resembles the 
original distribution. 
 
The generation quality of diffusion models has been demonstrated through their 
exceptional capability in generating highly detailed, realistic images that often surpass 
the quality of both GAN and VAE-generated content. Unlike GANs, diffusion 
models do not suffer from adversarial training instabilities, and unlike early 
transformer approaches, they do not require massive computational resources for 
basic functionality. These models can cover the data distribution more accurately 
than GANs, allowing them to generate a wider variety of high-quality content. 
 
4 The Deepfake Pipeline: Tools and Techniques for Synthetic Content 

Creation 
 
Deepfakes, a specific application of GANs, have become a key technology for 
generating hyper-realistic fake videos and audio. Deepfakes allow for the alteration 
of visual and auditory content in a manner that is nearly indistinguishable from real 
media. While the foundational models and applications mentioned here represent 
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the pioneering technologies that first brought deepfakes to mainstream attention, 
the field is currently experiencing unprecedented rapid evolution. Early tools like 
FakeApp, FaceSwap, and Face2Face established the fundamental principles, but 
today's landscape features increasingly sophisticated architectures, real-time 
processing capabilities, and improved accessibility. The focus has shifted from 
experimental proof-of-concepts to robust, production-ready toolkits that can deliver 
professional-quality results with minimal technical expertise required from users. 
Below are the major techniques used in deepfake generation and their current 
implementation frameworks: 
 
− Face-swap technology is the most recognized form of deepfake. It involves 

replacing a person's face in a target video with the face of another individual by 
training an AI model, one of the ones seen in the previous section, on two sets 
of facial images: the source face and the target face. The model learns to encode 
the distinctive features of the source person's face into a latent representation, 
then reprojects these encoded features onto the target person's facial structure. 
The face swap process allows for automatic swapping of facial features while 
maintaining the context and integrity of the original video's environment, 
adjusting for different face shapes, angles, lighting conditions, and camera 
perspectives. 

− Lip-syncing deepfakes manipulate the movement of the lips in a video to 
match a specific audio input. This technique takes the target video frames and 
the desired audio as inputs, analysing the phonetic structure and temporal 
patterns of the speech to generate corresponding visual mouth shapes and facial 
muscle movements. The model encodes the audio features and learns the 
correlation between speech sounds and their visual representations, generating a 
video where the target person's mouth movements are synchronized with 
arbitrary speech audio. Advanced models employ GenAI to generate real-time 
lip movements, eye-blinking, and facial expressions that naturally accompany 
speech, resulting in highly realistic video content. 

− Face reenactment is a deepfake technique where a source actor's facial 
expressions, gestures, and head movements are transferred to a target video. The 
system takes video input from both a source performer and a target person, 
encoding the source's facial dynamics, including expression parameters, head 
pose, and micro-movements, into a control representation. This encoded motion 
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data is then reprojected onto the target's facial structure and appearance, enabling 
the modification of a person's facial expressions in real-time or recorded videos. 
This makes it appear as if they are displaying emotions or gestures, they never 
performed, while preserving the target person's identity and the original video 
context. 

− Voice cloning generates synthetic speech that mimics a target person's voice 
characteristics and speaking patterns. This technique utilizes pre-trained models 
that can clone voices with minimal input requirements, requiring only a few 
seconds of audio samples from the target speaker. The system takes the reference 
audio sample and the desired text as inputs, encodes the vocal characteristics 
from the audio sample, and generates new speech content that maintains the 
original speaker's voice while saying the provided text. These models can 
reproduce acoustic properties, speaking mannerisms, and natural speech 
variations, enabling the generation of convincing audio content where the target 
appears to be saying words or phrases they never actually spoke. 

 
The evolution of deepfake technology from academic research to practical 
applications has followed a predictable pattern of democratization. Initially 
dominated by complex open-source frameworks requiring substantial technical 
expertise, the field has progressively become more accessible through lighter models 
and, most recently, commercial platforms that abstract away all technical complexity. 
 
The early deepfake ecosystem was built around open-source projects. DeepFaceLab 
emerged as the dominant force, responsible for creating the majority of professional 
deepfake content. This comprehensive framework provided end-to-end 
functionality for face extraction, training, and merging, but demanded significant 
technical knowledge and powerful hardware. Users needed to understand neural 
network architectures, manage training parameters, and navigate complex file 
structures. FaceSwap offered a similarly powerful alternative with better cross-
platform support and multi-GPU capabilities, built on TensorFlow and Python.  
 
This technical and financial barrier initially limited the creation of deepfakes mainly 
to academic researchers and industry professionals who used the technology for 
academic studies or private work. However, demonstrations of the technology's 
capabilities quickly attracted the interest of a wider community, including people 
with malicious intentions. Online forums and GitHub communities began sharing 
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code, tutorials, and pre-trained models. The availability of detailed guides and 
community support made the technology increasingly accessible, although it still 
required considerable technical expertise and a significant hardware investment. 
Cloud platforms played a crucial role in this democratization. Google Colab, 
launched in 2017 as a tool for research and training in the field of machine learning, 
offered free access to powerful GPUs. This allowed anyone to experiment with deep 
learning models without having to purchase expensive hardware by following online 
guides. Although many have used these resources for legitimate projects, 
unfortunately, some uses have involved misuse for the creation of non-consensual 
deepfakes. To circumvent the problem in 2022, Google implemented specific 
restrictions in its terms of service, explicitly prohibiting the use of Colab for the 
generation of deepfakes. 
 
The landscape began shifting with the development of lighter, more efficient models 
that could run on consumer hardware. These optimized architectures reduced 
training times and memory requirements, making deepfake creation feasible on 
standard gaming PCs. Real-time applications like DeepFaceLive demonstrated that 
face swapping could be performed live during video calls or streaming, achieving 
real-time performances by using a common laptop. 
 
Today's synthetic media landscape has been transformed by commercial platforms 
that have eliminated virtually all technical barriers. It is possible to generate 
multimedia content instantly through services offered to users on websites. Services 
such as FakeYou and DeepSwap offer professional-quality results with a few simple 
clicks. These platforms handle all the computational complexity in the cloud, 
allowing users to create convincing multimedia content simply by uploading images 
and videos. Subscription models typically start at tens of dollars per month, making 
the technology accessible to anyone willing to pay the cost of the service to generate 
content that can be used for entertainment purposes. 
 
Even large companies have released their own models for using video generation 
models for benevolent purposes. HeyGen, Veo3, and Runway are some of the 
models used to generate videos useful for advertising campaigns or simply for fun. 
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The above-mentioned models were then developed by design to be used ethically to 
avoid the generation of malicious content. The landscape of video generation has 
been transformed by models such as Runway and Google's Veo 3, which represent 
significant advances in both quality and control. Runway Gen-4 introduces 
consistent character generation across scenes, allowing filmmakers to maintain visual 
continuity while generating content from multiple perspectives. The model excels at 
realistic physical simulation and can use visual references combined with textual 
instructions without requiring fine-tuning. Google's Veo 3 goes a step further by 
generating videos with native audio integration, including synchronized dialogue, 
ambient sounds, and music, creating 8-second clips that achieve cinematic-level 
realism while maintaining built-in security protocols. 
 
The development of these platforms has opened up a world of opportunities for 
advertising campaigns, corporate training, multilingual customer support, and 
educational content thanks to software such as HeyGen, which focuses on creating 
AI avatars for business applications such as The platform can create highly realistic 
digital twins from a single photo, with advanced understanding of the script that 
regulates facial expressions, body language, and voice inflections to match the 
meaning of the content, while maintaining built-in protections and human 
moderation to prevent misuse. 
 
The synthetic media toolkit has been further expanded by advanced image 
manipulation capabilities. Google's Nano Banana, integrated into Gemini, 
represents a breakthrough in natural language-based image editing that transforms 
how synthetic content is created. Unlike traditional photo editing software requiring 
technical skills, Nano Banana allows users to modify images through simple 
conversational prompts. Users can seamlessly blend multiple photos, change 
backgrounds, alter clothing and appearance, or place subjects in entirely new 
environments while maintaining photorealistic consistency. The model excels at 
character preservation, ensuring that people and animals retain their distinctive 
features across edits, making it particularly powerful for creating convincing 
synthetic scenarios. 
 
This capability transforms content creation workflows by eliminating the traditional 
barrier between imagination and execution. Content creators can now generate 
complex composite images by describing desired changes rather than mastering 
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complex editing techniques. The model's ability to maintain spatial coherence and 
lighting consistency across edits makes it possible to create highly believable 
synthetic content that would previously require professional photography and post-
production skills. 
 
These advanced platforms incorporate sophisticated content moderation systems 
designed to prevent harmful applications. The model includes embedded content 
filters that restrict inappropriate content generation, visual watermarking with 
SynthID for authenticity verification, and metadata identification to maintain 
provenance tracking. This “safe-by-design” philosophy implements restrictions 
during the development process rather than relying solely on post-generation 
filtering. 
 
5 Concluding Remarks 
 
This chapter examined the technological foundations of artificial intelligence that 
have taken this discipline from rule-based systems designed to mimic human 
intelligence to modern generative models capable of generating synthetic media, 
representing a fundamental change in the way multimedia content is generated. 
 
The generative artificial intelligence ecosystem has spread very quickly, starting with 
GANs, which, with their variants, have led to the development of models such as 
StyleGAN, capable of generating non-existent human faces with a very high level of 
quality, and transformers for textual and multimodal applications. An example of 
the use of these models is GPT and all the large language models currently in use, 
which allow the generation of very high-quality text and are capable of generating 
text documents with human-like “reasoning” capabilities. Then there are diffusion 
models, which achieve image generation and editing with unprecedented image 
quality through iterative denoising. 
 
It is important to note that the development of these models requires huge data sets, 
high-performance GPU clusters, and weeks of training. The technology has evolved 
from resource-intensive research projects to cloud-based services that hide all the 
technical complexity, transforming the creation of synthetic content from an 
exclusive research domain to a tool. The technology has evolved from resource-
intensive research projects to cloud-based services that hide all the technical 
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complexity, transforming the creation of synthetic content from an exclusive 
research domain to a tool accessible to everyone. This is a positive aspect in terms 
of the democratization of technology, but it raises ethical risks to consider regarding 
the spread of inauthentic content that can mislead users or defame individuals. 
 
For this reason, the models developed by companies have built-in security measures 
that include content filters that prevent the generation of harmful content, training 
data curation, watermarking technologies such as SynthID, and API-level 
restrictions. Although imperfect, these represent an improvement over the early 
unrestricted models, which, in the early stages of generative artificial intelligence, 
allowed non-consensual or defamatory content to be spread online. 
 
The fundamental challenge is that algorithms that enable legitimate applications in 
entertainment and education can equally serve harmful purposes, such as 
disinformation and fraud. 
 
 
End notes 
 
Michele Brienza is the main author of this chapter. He wrote all the sections that briefly describe the 
history of AI, from its birth to new generative AI models, and the tools and processes that enable the 
creation of synthetic media. Domenico Daniele Bloisi and Daniele Nardi collaborated in the 
organization of the content and final review of the chapter.  
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