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The chapter provides an overview of the technology behind
deepfakes, describing what a deepfake is and how it is created. The
chapter is structured around three sections: (i) theoretical
foundations of artificial intelligence, machine learning, and deep
learning, (ii) generative models and synthetic data, and (iii) the
synthetic media toolkit. Firstly, it describes Al evolution, starting
from the early stages leading up to the latest models that can
generate data. The latest models are then described, highlighting
their capabilities and explaining how these models open a wide
range of opportunities, as well as the concerns regarding the
generation of highly realistic data that can deceive users, as is the
case with deepfakes. Finally, knowledge of how the machines learn
from the data helps in using these tools. A clear understanding of
the process behind the technology leads to unmasking the illusion
and understanding how the technology works, enabling informed

use.
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1 Theoretical Foundations: Artificial Intelligence, Machine Learning,

Deep Learning

A “deepfake” is a digital content (i.e., an image, a video, or an audio) modified or
generated by using artificial intelligence (Al) tools. The term combines two concepts:
“deep” refers to deep learning, a branch of Al, while “fake” indicates that the
content has been manipulated or altered in some way. So, to understand deepfakes,

it is important to first examine the theoretical foundations of AL

The objective of Al is to create machines capable of performing tasks that typically
require human intelligence. The journey begins in the 1950s, when pioneers such as
Alan Turing posed the fundamental question of machine intelligence: “Can
machines think?” (Epstein et al. 2009). This chapter provides a brief technical
overview of how the technology born in 1950 has evolved to today's capability of
creating highly realistic synthetic data content.

The path from Turing's question to today's deepfakes not only regards technological
advancement, but it is also a fundamental transition in how machines process and
generate information. In scientific evolution over the last decades, we have seen a
progression from rule-based systems to machine learning and, finally, to deep neural
networks. This evolution has led nowadays to models that can generate realistic
human faces, synthesize speech in any voice, and produce entirely fictional yet

photorealistic scenarios.

The formal birth of the term “artificial intelligence” took place in 1956, when, during
a conference, John McCarthy, one of the pioneers of Al, coined the term (McCarthy
et al. 2006). However, the conceptual foundations were laid earlier by Alan Turing,
whose 1950 paper “Computing Machinery and Intelligence” introduced the famous
Turing Test as a benchmark for machine intelligence, posing the question, “Can

machines think?”

Developing a machine capable of “thinking” is a challenge that extends beyond mere
technical complexity. It requires sophisticated models, advanced computational
architectures and, crucially, a profound sense of responsibility. The aim is to create

systems that can produce high-quality content while adhering to fundamental ethical
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principles; a balance that is becoming increasingly important as these technologies

become more powerful and widespread.

To understand how machines learn to replicate human intelligence, Tom Mitchell
provides a foundational definition of the learning process: “A computer program is
said to learn from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as measured by P, improves
with experience E” (Mitchell 1997).

Early Al development focused on symbolic Al or knowledge-based systems. These
systems operated on the principle that intelligence could be treplicated through
explicit rules and logical reasoning. Engineers would interview domain experts,
codify their knowledge into if-then rules, and create systems that could make
decisions within structured domains. Due to their rule-based architecture, small
changes in input could lead to system failures; to operate in a human-like fashion, a
machine requires learning from experience or adapting to new situations not
explicitly programmed. Consider image recognition: the exclusive use of standard
geometric features such as size, colour, and pose is not sufficient for this task, which
requires a more robust approach. Machine learning has emerged as a solution to
these limitations, representing a significant advance in the field of artificial
intelligence. Instead of programming explicit rules, ML enables systems to learn
patterns from data. The fundamental idea is that human behaviours can be learned

through data without being specified by a set of rules.
Machine learning comprises three main paradigms:

—  Supervised Learning: a machine learning paradigm that involves training
algorithms on labelled datasets, where each training example consists of an
input paired with its corresponding correct output (label). The system learns to
map inputs to desired outputs by analysing these input-output pairs during the
training phase. Through this process, the algorithm identifies patterns and
relationships within the data that enable it to make accurate predictions.
Classification tasks (determining whether an email is spam) and regression
problems (predicting house prices) are examples of supervised learning. The
mathematical foundation rests on finding functions that minimize prediction

errors across training data while generalizing well to unseen examples.
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—  Unsupervised Learning: a machine learning paradigm that addresses the
challenge of discovering hidden patterns, structures, and relationships within
data without the guidance of explicit labels or target outputs. Unlike supervised
learning, these algorithms must identify meaningful patterns just using the input
data itself, making this approach particularly valuable for exploratory data
analysis and knowledge discovery. These algorithms might cluster customers
into market segments, reduce data dimensionality for visualization, or discover
anomalies in network traffic. Principal Component Analysis (PCA) and k-
means clustering represent classical unsupervised techniques that remain widely
used today.

—  Reinforcement Learning: a machine learning paradigm that draws inspiration
from behavioural psychology, where agents learn through trial and error in
interactive environments. The agent receives rewards or penalties for actions,
gradually learning optimal strategies to reach a specified goal. This approach
has produced remarkable successes in game-playing Al, from chess programs

to AlphaGo's historic victory over human champions.

The early 2000s marked a pivotal transformation in artificial intelligence, driven by
exponential growth in computational resources and unprecedented access to large
datasets. This technological convergence enabled the emergence of Deep Learning
methodologies that fundamentally changed how machines process information.
Complex neural architectures like Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RINNs) demonstrated remarkable capabilities in
pattern recognition, language understanding, and cross-modal translation tasks that
had previously been challenging. These networks are made of layers that learn
patterns from input data to predict outputs.

A salient moment arrived in 2014, with Tan Goodfellow's introduction of Generative
Adversarial Networks (GANs), establishing the foundation for modern generative
artificial intelligence (Goodfellow et al. 2014). This breakthrough represented more
than incremental progress; it introduced an entirely new paradigm for synthetic data

creation.

The GAN framework operates through an adversarial training process involving two
competing neural networks. The generator network learns to transform random

noise into increasingly synthetic content, whether images, audio, or text. Meanwhile,
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the discriminator network distinguishes whether the content in the input is generated
or not, acting as a digital detective. This competitive process creates a feedback loop
where both networks continuously improve: the generator becomes more skilled at
creating convincing fakes, while the discriminator becomes better at detecting them.
Eventually, this adversarial process reaches an equilibrium where generated content

achieves a high level of realism.

However, the most revolutionary advancement in generative Al came with the 2017
introduction of the Transformer architecture (Vaswani et al. 2017), which
transformed both natural language processing and artificial intelligence.
Transformers introduced the attention mechanism, enabling models to dynamically
focus on relevant input segments during processing. This architecture consists of an
encoder that builds rich contextual representations through self-attention, and a
decoder that generates outputs autoregressively by considering both encoded input
and previously generated tokens. This innovation directly enabled the development
of GPT models by OpenAl, which demonstrated unprecedented natural language
capabilities through large-scale pre-training on diverse text corpora, fundamentally

changing how machines understand and generate human language

The impact of GANs has led to advantages across numerous applications. Beyond
generating photorealistic synthetic faces of non-existent individuals, these models
have revolutionized creative industries, enhanced image super-resolution
techniques, and provided synthetic training data solutions when real datasets are
limited or prohibitively expensive. GANs essentially established the conceptual
groundwork for the generative Al revolution, inspiring subsequent innovations

including diffusion models and transformer-based architectures.

While GANs dominated eatly generative Al development, diffusion models (Ho et
al. 2020). emerged as an alternative, particularly for image synthesis tasks. These
models employ a fundamentally different approach: rather than direct generation,
they learn to progressively remove noise from random input through iterative
refinement steps. This denoising process offers greater training stability and finer
control over the generation process. Contemporary models like DALL-E (Ramesh
et al. 2021) and Stable Diffusion (Rombach et al. 2022) exemplify how diffusion
approaches can produce both artistic and photorealistic imagery with unprecedented

precision and creative flexibility.
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2 Generative Models and Synthetic Data

The original GAN, called Vanilla GAN (Goodfellow et al. 2014), marked the
beginning of adversarial networks. Training GANSs is challenging due to technical
issues such as mode collapse and unstable gradients that cause not high-quality
output generation, but this model laid the groundwork for the future development
of GAN architectures. Since the introduction of Vanilla GANs, numerous
improvements and variations have been proposed to address limitations and expand

the applicability of GANs. Some of the major advancements include:

— Conditional GANs (cGANs) (Mirza and Osindero 2014) introduced the ability
to condition the generation process on additional information, such as class
labels. By conditioning both the generator and discriminator on a desired output
class, cGANs allowed for greater control over the generated outputs. This was a
critical advancement in applications like image-to-image translation and text-to-
image generation.

— Deep Convolutional GAN (DCGAN) (Radford et al. 2016) leveraged
convolutional neural networks (CNNs) to improve the stability and quality of
generated images. DCGANSs enabled the generation of more detailed and higher-
resolution images by using convolutional layers in both the generator and
discriminator. This model became a benchmark for image synthesis tasks and
paved the way for many subsequent GAN models.

— Wasserstein GAN (WGAN) (Arjovsky et al. 2017) addressed the training
instability issue by using the Wasserstein distance to measure the difference
between real and generated data distributions. This led to more stable training
and better convergence.

— Progressive GAN (PGAN) (Karras et al. 2018) improved the generation of
high-resolution images by starting with a low-resolution image and progressively
increasing the resolution during training. This method helped generate more
stable and realistic images.

— CycleGAN (Zhu et al. 2020) introduced the concept of cycle consistency,
enabling unpaired image-to-image translation. This meant that CycleGANs could
learn to transform images from one domain to another without needing paired
training data, making it highly versatile for applications like photo enhancement

and style transfer.
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— StyleGAN (Karras et al. 2019) introduced a new way to control the generation
process by manipulating latent space features to produce human faces.
StyleGAN's ability to disentangle features like pose, facial expression, and
hairstyle in the generation process resulted in highly realistic images. StyleGAN2
(Karras et al. 2020) and StyleGAN3 (Karras et al. 2021) were followed by
improvements, including better handling of textures and the ability to create
more coherent images across different resolutions.

— BigGAN (Brock et al. 2019) enhanced the performance of GANs by training on
large-scale datasets with higher computational power. BigGANs demonstrated
the capability of GANSs to generate incredibly detailed and high-quality images,
pushing the boundaries of what GANs could achieve.

— Self-Attention GAN (SAGAN) (Zhang et al. 2018) introduced self-attention
mechanisms that allowed the network to focus on relevant parts of an image
while generating it. This enabled the generation of images with greater structural
and spatial consistency.

— DragGAN (Pan et al. 2023) represents a novel approach to interactive image
manipulation. It enables users to control specific points in an image and drag
them to target positions, providing precise control over shape, pose, and
expression. This interactive manipulation method enhances user control in

generating and editing images.

The evolution of GANs from simple image generation to sophisticated
manipulation tools marks a critical turning point in synthetic media creation. As
these models became more powerful and accessible, they enabled a new
phenomenon that would capture attention: deepfakes. Thanks to their ability to
generate and modify existing multimedia content with increasingly realistic results,
the phenomenon of deepfakes has spread widely. Deepfakes are synthetic content
created through sophisticated artificial intelligence models, particularly GANs and
diffusion models, which allow for convincing manipulation of videos, images, and

audio recordings.

This technological capability, while impressive from an engineering perspective, has
introduced unprecedented challenges. The same algorithms that can enhance
medical imaging or create innovative art can also fabricate convincing videos of

public figures saying things they never said, or place individuals in scenarios they
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never experienced. The democratization of these tools has made synthetic media
creation accessible beyond academic laboratories, raising fundamental questions

about truth, authenticity, and the nature of evidence in our digital age.
3 Beyond GANSs: The New Wave of Generative Models

While GANs have dominated the field of image synthesis and related tasks for
almost a decade, other approaches have shown promising results in producing highly
detailed and controllable outputs. These alternative models have provided new

perspectives on how generative Al can be approached.

Variational Autoencoders, introduced by Kingma and Welling in 2013 (Kingma and
Welling 2013), represent one of the earliest and most influential alternatives to
GANs in the generative modelling landscape. VAEs combine the concepts of
autoencoders with variational inference, creating a probabilistic framework for
learning latent representations of data. The architecture consists of two main
components: an encoder network that maps input data to a probabilistic latent space,
and a decoder network that reconstructs the original data from latent
representations. Unlike traditional autoencoders that learn deterministic mappings,
VAEs learn to encode data into probability distributions in the latent space, typically

Gaussian distributions characterized by mean and variance parameters.

The key advantage of VAEs lies in their stable training process, which leads to more
stable and predictable training compared to the adversarial training of GANs. The
probabilistic nature of VAE latent spaces enables smooth interpolations between
different data points, making them particularly useful for tasks requiring controlled
generation and data exploration. However, VAEs also have notable limitations,
particularly in generating sharp, high-resolution images, where they tend to produce
somewhat blurry outputs compared to GANS.

The introduction of the Transformer architecture (Vaswani et al. 2017)
revolutionized natural language processing and opened new possibilities for
generative modelling across multiple modalities. Originally designed for sequence-
to-sequence tasks, Transformers have proven to be remarkably versatile and
powerful for generative applications. The self-attention mechanism allows

Transformers to model long-range dependencies effectively, making them
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particularly suitable for sequential data generation. Unlike classic methods such as
RNNs or CNNS, transformers can process entire sequences in parallel and capture

complex relationships between distant elements.

Most transformer-based generative models work autoregressively, predicting the
next token in a sequence given all previous tokens. This approach has proven highly
effective for text, code, and even image generation when images are treated as
sequences of tokens. The Generative Pre-Trained Transformer (GPT models) are
language models. These models showed that scaling up transformers with massive
datasets could lead to emergent capabilities in text generation, reasoning, and even

multimodal understanding.

Building upon the foundations laid by VAEs and the architectural innovations of
Transformers, Diffusion Models have emerged as perhaps the most significant
advancement in generative Al in recent years. These models have achieved
unprecedented quality in image generation and are rapidly expanding to other
modalities. Diffusion models work by modelling the process of data generation as
the reverse of a diffusion process, starting with random noise and gradually
denoising it through a series of iterative steps to generate data that resembles the
original distribution.

The generation quality of diffusion models has been demonstrated through their
exceptional capability in generating highly detailed, realistic images that often surpass
the quality of both GAN and VAE-generated content. Unlike GANSs, diffusion
models do not suffer from adversarial training instabilities, and unlike early
transformer approaches, they do not require massive computational resources for
basic functionality. These models can cover the data distribution more accurately

than GAN:s, allowing them to generate a wider variety of high-quality content.

4 The Deepfake Pipeline: Tools and Techniques for Synthetic Content

Creation

Deepfakes, a specific application of GANSs, have become a key technology for
generating hyper-realistic fake videos and audio. Deepfakes allow for the alteration
of visual and auditory content in a manner that is neatly indistinguishable from real

media. While the foundational models and applications mentioned here represent
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the pioneering technologies that first brought deepfakes to mainstream attention,
the field is currently experiencing unprecedented rapid evolution. Early tools like
FakeApp, FaceSwap, and Face2Face established the fundamental principles, but
today's landscape features increasingly sophisticated architectures, treal-time
processing capabilities, and improved accessibility. The focus has shifted from
experimental proof-of-concepts to robust, production-ready toolkits that can deliver
professional-quality results with minimal technical expertise required from users.
Below are the major techniques used in deepfake generation and their current

implementation frameworks:

— Face-swap technology is the most recognized form of deepfake. It involves
replacing a person's face in a target video with the face of another individual by
training an Al model, one of the ones seen in the previous section, on two sets
of facial images: the source face and the target face. The model learns to encode
the distinctive features of the source person's face into a latent representation,
then reprojects these encoded features onto the target person's facial structure.
The face swap process allows for automatic swapping of facial features while
maintaining the context and integrity of the original video's environment,
adjusting for different face shapes, angles, lighting conditions, and camera
perspectives.

— Lip-syncing deepfakes manipulate the movement of the lips in a video to
match a specific audio input. This technique takes the target video frames and
the desired audio as inputs, analysing the phonetic structure and temporal
patterns of the speech to generate corresponding visual mouth shapes and facial
muscle movements. The model encodes the audio features and learns the
correlation between speech sounds and their visual representations, generating a
video where the target petson's mouth movements are synchronized with
arbitrary speech audio. Advanced models employ GenAl to generate real-time
lip movements, eye-blinking, and facial expressions that naturally accompany
speech, resulting in highly realistic video content.

— Face reenactment is a deepfake technique whete a source actor's facial
expressions, gestures, and head movements are transferred to a target video. The
system takes video input from both a source performer and a target person,
encoding the source's facial dynamics, including expression parameters, head

pose, and micro-movements, into a control representation. This encoded motion
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data is then reprojected onto the target's facial structure and appearance, enabling
the modification of a person's facial expressions in real-time ot recorded videos.
This makes it appear as if they are displaying emotions or gestures, they never
performed, while preserving the target person's identity and the original video
context.

— Voice cloning generates synthetic speech that mimics a target person's voice
characteristics and speaking patterns. This technique utilizes pre-trained models
that can clone voices with minimal input requirements, requiring only a few
seconds of audio samples from the target speaker. The system takes the reference
audio sample and the desired text as inputs, encodes the vocal characteristics
from the audio sample, and generates new speech content that maintains the
original speaker's voice while saying the provided text. These models can
reproduce acoustic properties, speaking mannerisms, and natural speech
variations, enabling the generation of convincing audio content where the target

appears to be saying words or phrases they never actually spoke.

The evolution of deepfake technology from academic research to practical
applications has followed a predictable pattern of democratization. Initially
dominated by complex open-source frameworks requiring substantial technical
expertise, the field has progressively become more accessible through lighter models

and, most recently, commercial platforms that abstract away all technical complexity.

The early deepfake ecosystem was built around open-source projects. DeepFaceLab
emerged as the dominant force, responsible for creating the majority of professional
deepfake content. This comprehensive framework provided end-to-end
functionality for face extraction, training, and merging, but demanded significant
technical knowledge and powerful hardware. Users needed to understand neural
network architectures, manage training parameters, and navigate complex file
structures. FaceSwap offered a similarly powerful alternative with better cross-

platform support and multi-GPU capabilities, built on TensorFlow and Python.

This technical and financial barrier initially limited the creation of deepfakes mainly
to academic researchers and industry professionals who used the technology for
academic studies or private work. However, demonstrations of the technology's
capabilities quickly attracted the interest of a wider community, including people

with malicious intentions. Online forums and GitHub communities began sharing
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code, tutorials, and pre-trained models. The availability of detailed guides and
community support made the technology increasingly accessible, although it still
required considerable technical expertise and a significant hardware investment.
Cloud platforms played a crucial role in this democratization. Google Colab,
launched in 2017 as a tool for research and training in the field of machine learning,
offered free access to powerful GPUs. This allowed anyone to experiment with deep
learning models without having to purchase expensive hardware by following online
guides. Although many have used these resources for legitimate projects,
unfortunately, some uses have involved misuse for the creation of non-consensual
deepfakes. To circumvent the problem in 2022, Google implemented specific
restrictions in its terms of setrvice, explicitly prohibiting the use of Colab for the

generation of deepfakes.

The landscape began shifting with the development of lighter, more efficient models
that could run on consumer hardware. These optimized architectures reduced
training times and memory requirements, making deepfake creation feasible on
standard gaming PCs. Real-time applications like DeepFaceLive demonstrated that
face swapping could be performed live during video calls or streaming, achieving

real-time performances by using a common laptop.

Today's synthetic media landscape has been transformed by commertcial platforms
that have eliminated virtually all technical barriers. It is possible to generate
multimedia content instantly through services offered to users on websites. Services
such as FakeYou and DeepSwap offer professional-quality results with a few simple
clicks. These platforms handle all the computational complexity in the cloud,
allowing users to create convincing multimedia content simply by uploading images
and videos. Subscription models typically start at tens of dollars per month, making
the technology accessible to anyone willing to pay the cost of the service to generate

content that can be used for entertainment purposes.

Even large companies have released their own models for using video generation
models for benevolent purposes. HeyGen, Veo3, and Runway are some of the

models used to generate videos useful for advertising campaigns or simply for fun.
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The above-mentioned models were then developed by design to be used ethically to
avoid the generation of malicious content. The landscape of video generation has
been transformed by models such as Runway and Google's Veo 3, which represent
significant advances in both quality and control. Runway Gen-4 introduces
consistent character generation across scenes, allowing filmmakers to maintain visual
continuity while generating content from multiple perspectives. The model excels at
realistic physical simulation and can use visual references combined with textual
instructions without requiring fine-tuning. Google's Veo 3 goes a step further by
generating videos with native audio integration, including synchronized dialogue,
ambient sounds, and music, creating 8-second clips that achieve cinematic-level

realism while maintaining built-in security protocols.

The development of these platforms has opened up a world of opportunities for
advertising campaigns, corporate training, multilingual customer support, and
educational content thanks to software such as HeyGen, which focuses on creating
Al avatars for business applications such as The platform can create highly realistic
digital twins from a single photo, with advanced understanding of the script that
regulates facial expressions, body language, and voice inflections to match the
meaning of the content, while maintaining built-in protections and human

moderation to prevent misuse.

The synthetic media toolkit has been further expanded by advanced image
manipulation capabilities. Google's Nano Banana, integrated into Gemini,
represents a breakthrough in natural language-based image editing that transforms
how synthetic content is created. Unlike traditional photo editing software requiring
technical skills, Nano Banana allows users to modify images through simple
conversational prompts. Users can seamlessly blend multiple photos, change
backgrounds, alter clothing and appearance, or place subjects in entirely new
environments while maintaining photorealistic consistency. The model excels at
character preservation, ensuring that people and animals retain their distinctive
features across edits, making it particularly powerful for creating convincing

synthetic scenarios.

This capability transforms content creation workflows by eliminating the traditional
barrier between imagination and execution. Content creators can now generate

complex composite images by describing desired changes rather than mastering
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complex editing techniques. The model's ability to maintain spatial coherence and
lighting consistency across edits makes it possible to create highly believable
synthetic content that would previously require professional photography and post-
production skills.

These advanced platforms incorporate sophisticated content moderation systems
designed to prevent harmful applications. The model includes embedded content
filters that restrict inappropriate content generation, visual watermarking with
SynthID for authenticity verification, and metadata identification to maintain
provenance tracking. This “safe-by-design” philosophy implements restrictions
during the development process rather than relying solely on post-generation

filtering.
5 Concluding Remarks

This chapter examined the technological foundations of artificial intelligence that
have taken this discipline from rule-based systems designed to mimic human
intelligence to modern generative models capable of generating synthetic media,

representing a fundamental change in the way multimedia content is generated.

The generative artificial intelligence ecosystem has spread very quickly, starting with
GANSs, which, with their variants, have led to the development of models such as
StyleGAN, capable of generating non-existent human faces with a very high level of
quality, and transformers for textual and multimodal applications. An example of
the use of these models is GPT and all the large language models currently in use,
which allow the generation of very high-quality text and are capable of generating
text documents with human-like “reasoning” capabilities. Then there are diffusion
models, which achieve image generation and editing with unprecedented image

quality through iterative denoising.

It is important to note that the development of these models requires huge data sets,
high-performance GPU clusters, and weeks of training. The technology has evolved
from resource-intensive research projects to cloud-based services that hide all the
technical complexity, transforming the creation of synthetic content from an
exclusive research domain to a tool. The technology has evolved from resource-

intensive research projects to cloud-based services that hide all the technical
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complexity, transforming the creation of synthetic content from an exclusive
research domain to a tool accessible to everyone. This is a positive aspect in terms
of the democratization of technology, but it raises ethical risks to consider regarding

the spread of inauthentic content that can mislead users or defame individuals.

For this reason, the models developed by companies have built-in security measures
that include content filters that prevent the generation of harmful content, training
data curation, watermarking technologies such as SynthlD, and API-level
restrictions. Although imperfect, these represent an improvement over the eatly
unrestricted models, which, in the early stages of generative artificial intelligence,

allowed non-consensual or defamatory content to be spread online.

The fundamental challenge is that algorithms that enable legitimate applications in
entertainment and education can equally serve harmful purposes, such as

disinformation and fraud.

End notes

Michele Brienza is the main author of this chapter. He wrote all the sections that briefly describe the
history of Al from its birth to new generative AI models, and the tools and processes that enable the
creation of synthetic media. Domenico Daniele Bloisi and Daniele Nardi collaborated in the
organization of the content and final review of the chapter.
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