
Uvod v WordPress
Saša Brdnik, Tjaša Heričko, Špela Čučko, Sašo Karakatič

Uvod v WordPress

Avtorji
dr. Saša Brdnik,

dr. Tjaša Heričko,
Špela Čučko, mag. inž. inf. in teh. kom.,

dr. Sašo Karakatič

26. januar 2026

Naslov
Title

Uvod v WordPress
Introduction to WordPress

Avtorij
Authors

Saša Brdnik
(Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko)

Tjaša Heričko
(Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko)

Špela Čučko
(Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko)

Sašo Karakatič
(Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko)

Recenzija

Review
Dejan Lavbič
(Univerza v Ljubljani, Fakulteta za računalništvo in informatiko)

Niko Lukač
(Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko)

Jezikovni pregled
Language editing Špela Vidmar

Tehnična urednika
Technical editors

Saša Brdnik
(Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko)

Jan Perša
(Univerza v Mariboru, Univerzitetna založba)

Oblikovanje ovitka

Cover designer
Saša Brdnik
(Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko)

Grafika na ovitku

Cover graphics Adobe Stock

Grafične priloge

Graphics material
Vsi viri so lastni, razen če ni navedeno drugače.
Brdnik, Heričko, Čučko, Karakatič (avtorji), 2026

Založnik
Published by

Univerza v Mariboru
Univerzitetna založba
Slomškov trg 15, 2000 Maribor, Slovenija
https://press.um.si, zalozba@um.si

Izdajatelj
Issued by

Univerza v Mariboru
Fakulteta za elektrotehniko, računalništvo in informatiko
Koroška cesta 46, 2000 Maribor, Slovenija
https://feri.um.si, feri@um.si

Izdaja

Edition Prva izdaja

Izdano

Published at
Maribor, Slovenija, januar 2026

Vrsta publikacije
Publication type

E-knjiga

Dostopno na
Available at https://press.um.si/index.php/ump/catalog/book/1074

© Univerza v Mariboru, Univerzitetna založba
/ University of Maribor, University of Maribor Press

Besedilo / Text © Brdnik, Heričko, Čučko, Karakatič (avtorji), 2026

To delo je objavljeno pod licenco Creative Commons Priznanje avtorstva-Deljenje pod enakimi pogoji 4.0
Mednarodna. / This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License.

Licenca dovoli uporabnikom reproduciranje, distribuiranje, dajanje v najem, javno priobčitev in predelavo
avtorskega dela, če navedejo avtorja in širijo avtorsko delo/predelavo naprej pod istimi pogoji. Za nova
dela, ki bodo nastala s predelavo, bo tako tudi dovoljena komercialna uporaba. Od BY NC SA licence se
ta razlikuje samo v tem, da je tu dovoljena tudi komercialna uporaba dela/predelave.

Vsa gradiva tretjih oseb v tej knjigi so objavljena pod licenco Creative Commons, razen če to ni navedeno
drugače. Če želite ponovno uporabiti gradivo tretjih oseb, ki ni zajeto v licenci Creative Commons, boste
morali pridobiti dovoljenje neposredno od imetnika avtorskih pravic.

https://creativecommons.org/licenses/by-sa/4.0/

Izdajo učbenika sofinancira Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike
Slovenije preko programske skupine P2-0057.

ISBN 978-961-299-106-7 (pdf)

DOI https://doi.org/10.18690/um.feri.3.2026

Cena
Price Brezplačni izvod

Odgovorna oseba založnika
For publisher

Prof. dr. Zdravko Kačič,
rektor Univerze v Mariboru

Citiranje
Attribution

Brdnik, S., Heričko, T., Čučko, Š., Karakatič, S. (2026). Uvod v
WordPress. Univerza v Mariboru, Univerzitetna založba. doi:
10.18690/um.feri.3.2026

CIP - Kataložni zapis o publikaciji
Univerzitetna knjižnica Maribor

004.9(035)(0.034.2)

 UVOD v WordPress [Elektronski vir] / avtorji Saša Brdnik ... [et al.]. - 1. izd. - E-knjiga. - Maribor : Univerza v Mariboru,
Univerzitetna založba, 2026

Način dostopa (URL): https://press.um.si/index.php/ump/catalog/book/1074

ISBN 978-961-299-106-7 (PDF)
doi: 10.18690/um.feri.3.2026
COBISS.SI-ID 265762051

Kazalo

Kazalo slik . V

Predgovor . IX

Uvod . XI

1 Kaj je WordPress? . 1

2 Namestitev sistema WordPress . 5

2.1 Lokalno razvojno okolje s sistemom WordPress . 5

2.1.1 Vzpostavitev lokalnega razvojnega okolja z orodjem Local 7

2.1.2 Vzpostavitev lokalnega razvojnega okolja z vsebniki Docker 11

2.2 Namestitev sistema WordPress pri ponudniku gostovanja 15

3 Osnovno delo s sistemom WordPress 17

3.1 Strani . 17

3.2 Prispevki . 19

3.3 Medijske vsebine . 20

3.4 Videz . 21

3.5 Vtičniki . 22

3.6 Uporabniki . 23

3.7 Nastavitve . 25

4 Priprava in prilagoditev spletnih vsebin za

objavo . 27

4.1 Notranji in zunanji dejavniki ter metrike optimizacije vsebin za iskalnike
 27

4.2 Dobre prakse optimizacije vsebin za iskalnike . 28

4.3 Analiza optimizacije za iskalnike . 29

5 Datotečna struktura v sistemu WordPress . . 31

5.1 Ključni direktoriji in datoteke . 31

5.2 Shema podatkovne zbirke . 34

5.3 Hierarhija predlog klasičnih tem . 35

5.3.1 Predloge domače strani . 37

5.3.2 Predloge prispevka . 39

5.4 Hierarhija predlog blokovnih tem . 40

5.5 Dostop do datotečnega sistema WordPress in podatkovne zbirke 41

5.5.1 Dostop prek nadzorne plošče WordPress . 42

5.5.2 Dostop prek nadzorne plošče cPanel . 44

5.5.3 Dostop prek protokola FTP/SFTP . 46

5.5.4 Dostop z ukazno vrstico in protokolom SSH . 47

6 Teme in vizualno urejanje . 49

6.1 Izbira teme . 50

6.2 Urejevalnik Gutenberg in blokovne teme . 52

6.3 Klasične teme . 55

6.4 Vtičniki za vizualno izdelavo strani . 56

6.4.1 Elementor . 57

II

6.4.2 Razširitve vtičnika Elementor . 61

6.5 Podteme . 63

6.5.1 Ustvarjanje podteme s pomočjo vtičnika . 63

6.5.2 Ročno ustvarjanje podteme . 64

6.5.3 Ustvarjanje podteme z ukazno vrstico . 66

6.5.4 Prilagoditev predlog in dodajanje funkcionalnosti v podtemi 66

7 Vtičniki . 71

7.1 Izbira vtičnikov . 72

7.1.1 Pregled najpogosteje uporabljenih vtičnikov . 73

7.2 Uporaba vtičnikov . 75

7.3 Razvoj lastnega vtičnika . 77

7.3.1 Upravljanje vtičnika preko nadzorne plošče WordPress 78

8 Dogodki, funkcije in razredi Wordpress 83

8.1 Akcije in filtri . 83

8.2 Funkcije . 85

8.3 Razredi . 86

8.4 Praktični primeri uporabe dogodkov, funkcij in razredov . 90

8.4.1 Registracija lastnega tipa prispevka in definiranje polj po meri . . . 90

8.4.2 Registracija lastne taksonomije . 96

8.4.3 Uporaba dogodkov za posege v delovanje vtičnikov . 98

8.5 WordPress vsebine za razvijalce . 101

9 WordPress kot brezglavi sistem za upravljanje

vsebin . 103

9.1 Dostop do podatkov s programskeim vmesnikom WordPress REST API .

103

9.1.1 Privzete končne točke . 104

III

9.1.2 Globalni parametri, paginacija in razvrščanje . 107

9.1.3 Avtentikacija in dovoljenja . 108

9.1.4 Praktični primer uporabe podatkov na ločenem obličju 109

Zaključek . 113

Priloge

Literatura . 115

Stvarno kazalo . 121

IV

Kazalo slik
1.1 Tržni delež WordPressa v primerjavi z drugim sistemom za upravljanje vsebin

(september 2025, povzeto po [4]). 2

2.1 Lokalna vzpostavitev spletnega mesta, ki temelji na sistemu WordPress, z
orodjem Local. 8

2.2 Vzpostavljeno lokalno spletno mesto z uporabo orodja Local. 9
2.3 Nastavitev WordPressa z namestitvenim čarovnikom v brskalniku. 14

3.1 Pregled osnovnih delov skrbniškega vmesnika WordPress. 18
3.2 Dodajanje in urejanje strani. 18
3.3 Dodajanje in urejanje prispevkov. 20
3.4 Dodajanje in urejanje medijskih vsebin. 21
3.5 Nastavitve klasične teme (tema Astra). 22
3.6 Nastavitve blokovne teme (tema Twenty Twenty-Five). 22
3.7 Upravljanje z vtičniki. 23
3.8 Dodajanje uporabnikov. 24
3.9 Splošne nastavitve WordPress spletnega mesta. 26

4.1 Nastavitve branja v nadzorni plošči WordPress. 30

5.1 Entitetno-relacijski diagram podatkovne zbirke osnovne WordPress strani [14]. . . 36
5.2 Hierarhija predlog (datotek), uporabljenih za prikaz posamezne strani. 38
5.3 Nastavitve domače strani. 39
5.4 Urejevalnik datotek tem v nadzorni plošči WordPress. 42
5.5 Urejevalnik datotek vtičnikov v nadzorni plošči WordPress. 43
5.6 Onemogočen dostop do nadzorne plošče (in vtičnika za urejanje) zaradi

sintaktične napake. 44
5.7 Prikaz datotečne strukture WordPress projekta – cPanel. 45

V

5.8 Prikaz sheme podatkovne baze WordPress projekta – phpMyAdmin. 45
5.9 Dostop do datotečne strukture WordPress projekta na strežniku z orodjem FileZilla.46

6.1 Izbira teme – WordPress knjižnica tem. 51
6.2 Struktura blokov, vidna pri urejanju strani. 52
6.3 Primer dodajanja bloka »Slika« in upravljanja z njegovimi nastavitvami. 53
6.4 Urejevalnik Gutenberg. 55
6.5 Prilagoditve klasične teme. 56
6.6 Nalaganje vtičnika Elementor. 58
6.7 Omogočanje vtičnika Elementor. 58
6.8 Urejanje strani z Elementorjem – izbira. 59
6.9 Urejanje globalnih nastavitev Elementorja. 59
6.10 Hierarhija gradnikov v Elementorju. 60
6.11 Osnovna organizacija strukture strani v Elementorju. 61
6.12 Osnovna organizacija strukture strani v Elementorju. 62
6.13 Urejanje posameznega gradnika v Elementorju. 62
6.14 Vtičniki, ki razširjajo funkcionalnosti Elementorja. 63
6.15 Dodan lasten tip prispevka Recept. 68
6.16 Prikaz sprememb, implementiranih v primeru 6.5.6. 69

7.1 Dodajanje vtičnikov preko WordPress nadzorne plošče. 72
7.2 Izbira vtičnika – pregled odločitvenih faktorjev. 73
7.3 Primer namestitve in aktivacije vtičnika Contact Form 7. 75
7.4 Primer uporabe vtičnika Contact Form 7 s kratko kodo. 76
7.5 Primer razvoja in uporabe preprostega vtičnika iz primera 7.3.1. 79
7.6 Razširitev vtičnika z dodajanjem možnosti upravljanja prek nadzorne plošče. . . . 82

8.1 Advanced Custom Fields (ACF®) vtičnik. 91
8.2 Uporaba ACF za definiranje vnosnih polj tipa prispevka Recept. 93
8.3 Dodajanje osnovne predloge za lasten tip prispevka Recept. 94
8.4 Posodobljen prikaz lastnega tipa prispevka Recept. 96
8.5 Prikaz dodane taksonomije pri tipu prispevka Recept. 98
8.6 Dogodki WooCommerce vtičnika na strani posameznega izdelka [47]. 99
8.7 Prilagojen izgled z uporabo dogodka WooCommerce (primer 8.4.3). 101

VI

9.1 Izgled primera uporabe podatkov brezglavega sistema WordPress (primer 9.1.3). . 111
9.2 Omogočanje REST izpostavitve lastnega tipa prispevka Recept v ACF. 112

VII

Predgovor

Učno gradivo Uvod v WordPress je zasnovano tako, da bralca postopno vodi skozi
razumevanje osnov in uporabo sistema za upravljanje vsebin WordPress ter ga uvaja v
razvoj spletnih strani, ki temeljijo na WordPressu. Vsako poglavje obravnava eno ključno
temo, ki jo najprej predstavimo teoretično, nato pa podkrepimo s praktičnimi primeri.
Pri tem bralcu predstavimo preproste primere za ponazoritev osnovnih konceptov, nato
pa še zahtevnejše primere, ki prikazujejo naprednejše možnosti uporabe. Namen takšne
organizacije učnega gradiva je zagotoviti uvod v razvoj spletnih strani s sistemom
WordPress za začetnike ter hkrati služiti kot priročnik za podporo pri njegovi naprednejši
uporabi.

Teoretično pomembni koncepti in razlike med termini so posebej izpostavljeni, kar
bralcu olajša hitro prepoznavanje ključnih informacij v besedilu, in sicer na naslednji
način:

Kaj je WordPress? WordPress je najpopularnejši sistem za upravljanje vsebin,
ki poganja več kot 43 % vseh spletnih mest. Nastal je leta 2003 kot preprosta
blogerska platforma, danes pa se uporablja za najrazličnejše namene – od
preprostih predstavitvenih spletnih strani do velikih medijskih portalov in spletnih
trgovin. Njegova moč je v odprtokodni naravi, veliki skupnosti uporabnikov in
razvijalcev ter modularni zasnovi, ki med drugim omogoča prilagoditve s temami
in vtičniki.

Pri delu z WordPressom je treba upoštevati številne posebnosti in praktične nasvete,
ki so izpostavljeni na naslednji način:

� Učno gradivo temelji na sistemu WordPress različice 6.8.3 (september 2025). Čeprav
se WordPress nenehno razvija, je gradivo zasnovano na temeljnih konceptih, ki jih je
po večini mogoče brez večjih težav preizkusiti tudi na starejših ali novejših različicah.
Če ob delu naletiš na odstopanja, to izkoristi kot priložnost za praktično raziskovanje
in spoznavanje, kako se WordPress prilagaja sodobnim potrebam.

Primeri so izpostavljeni v sivih blokih, ki ponujajo jasen in pregleden vpogled v
izseke programske kode skriptnega jezika PHP, slogovne predloge CSS, zapise HTML,
nastavitvene datoteke, izvajanje ukazov v ukazni vrstici ter strukturo direktorijev na
naslednji način:

Primer 0.0.1 (Skripta PHP s preprostim izpisom.)

<?php

echo 'Uvod v WordPress';

?>

X

Uvod

To učno gradivo je namenjeno vsem, ki se želijo seznaniti z osnovami razvoja spletnih
strani z uporabo sistema za upravljanje vsebin WordPress. Nastal je kot zbirka znanj,
izkušenj in praktičnih napotkov, ki smo jih pripravili izvajalci predmeta Praktikum:
spletni sistemi in vsebine na Fakulteti za elektrotehniko, računalništvo in informatiko
Univerze v Mariboru. Namenjen je študentom, začetnikom in vsem, ki se želijo na
strukturiran način naučiti vzpostavitve in prilagoditve lastne spletne strani. WordPress
je najvidnejši predstavnik sistemov za upravljanje vsebin, znan po svoji odprtokodnosti,
prilagodljivosti in razširljivosti. Zaradi nizke vstopne ovire, široke podpore skupnosti
ter bogatega ekosistema tem in vtičnikov je še posebej primeren za učenje sodobnih
pristopov k razvoju spletnih sistemov in vsebin. Priročnik je razdeljen na več
sklopov, ki obravnavajo predstavitev WordPressa, namestitev WordPressa, osnovno
delo z WordPressom, pripravo in prilagoditev vsebin za objavo, datotečno strukturo
v WordPressu, vizualno urejanje in prilagajanje s temami, vtičniki in dogodki ter
uporabo WordPressa kot brezglavega sistema za upravljanje vsebin. Poudarek je
na praktičnem pristopu in postopnem nadgrajevanju znanja, s čimer želimo bralcem
omogočiti samostojno ustvarjanje, razumevanje, razvoj in upravljanje spletnih strani v
okolju WordPress.

POGLAVJE 1

Kaj je WordPress?

WordPress je odprtokodna spletna programska oprema, ki je bila prvotno razvita kot
orodje za pisanje blogov, vendar se je sčasoma razvila v sistem za upravljanje vsebin
(angl. Content Management System ali CMS), ki lahko poganja spletna mesta, omrežja
in skupnosti. Začetki WordPressa segajo v leto 2003, ko sta Matt Mullenweg in Mike
Little ustvarila svojo vejitev b2/cafelog [1]. WordPress je licenciran pod Splošno javno
licenco GNU (angl. GNU General Public License) [2], kar pomeni, da je njegovo
izvorno kodo pod določenimi pogoji dovoljeno prosto spreminjati in razširjati. Kot
odprtokodna platforma omogoča svobodo uporabe in ustvarja močno skupnost, ki
aktivno prispeva k njenemu razvoju. WordPress razvijalcem omogoča hitro vzpostavitev
različnih vrst spletnih mest, od osebnih blogov in predstavitvenih strani podjetij do
kompleksnih aplikacij. Njegove prednosti vključujejo enostavno objavljanje različnih
vsebin, upravljanje uporabnikov, podporo za večjezičnost, optimizacijo za iskalnike ter
veliko zbirko tem in vtičnikov. Razvijalcem ponuja obsežen aplikacijski programski
vmesnik (angl. Application Programming Interface ali API), podporo za lastne tipe
prispevkov (angl. Cutom Post Type ali CPT) in možnost popolne prilagoditve [3].

WordPress.org ̸= WordPress.com Domeno WordPress.com upravlja pod-
jetje Automattic Inc., ki ponuja gostovanje in upravljanje spletnih strani z
uporabo WordPressa kot storitve. Osnovni paket njihovega gostovanja je
brezplačen, dodatne funkcionalnosti pa so na voljo v plačljivih paketih. Gre za
t. i. »gostovani WordPress«, kjer sta upravljanje s hitrostjo spletnega mesta
in varnostjo ter vzdrževanje večinoma avtomatizirana. Nasprotno je domena
WordPress!WordPress.org namenjena dejanski programski opremi WordPress, kjer
je na voljo tudi vsa dokumentacija, in omogoča prenos odprtokodne različice
WordPressa, ki jo nato razvijalec sam namesti na izbrani strežnik. Gre za t.

i. »samogostovani WordPress«, kjer mora razvijalec sam poskrbeti za gostovanje,
varnost in vzdrževanje, v zameno pa ima večjo svobodo in nadzor nad spletnim
mestom.

Danes je WordPress eden najpogosteje uporabljenih sistemov za razvoj in upravljanje
spletnih strani. Po podatkih W3Techs poganja več kot 43,4 % vseh spletnih mest, kar
ga uvršča daleč pred druge sisteme za upravljanje vsebin. Več kot 60,8 % spletnih
mest, za katera je poznan uporabljen sistem za upravljanje spletnih strani, uporablja
WordPress. Za primerjavo sistem Shopify, drugi najpopularnejši sistem za upravljanje
vsebin, uporablja zgolj 6,7 % spletnih mest [4]. Primerjava tržnega deleža WordPressa v
primerjavi z drugimi sistemi je prikazana na sliki 1.1. Njegova priljubljenost temelji na
enostavnosti uporabe, razširljivosti prek tem in vtičnikov ter močni skupnosti razvijalcev
in uporabnikov, ki prispevajo k neprestanemu razvoju sistema. Poleg posameznikov
WordPress uporabljajo tudi številna podjetja, izobraževalne ustanove in medijske hiše,
kar dokazuje njegovo vsestranskost in zanesljivost.

Slika 1.1. Tržni delež WordPressa v primerjavi z drugim sistemom za
upravljanje vsebin (september 2025, povzeto po [4]).

2

Poglavje 1. Kaj je WordPress?

WordPress temelji na skriptnem programskem jeziku PHP, ki se izvaja na strežniški
strani in omogoča dinamično generiranje spletnih vsebin. Kot privzeti sistem za
upravljanje s podatkovnimi bazami (angl. Database Management System ali DBMS)
WordPress uporablja podatkovno bazo MySQL oziroma njeno odprtokodno različico
MariaDB [5]. Vsi podatki o vsebinah, uporabnikih, nastavitvah in strukturi spletnega
mesta so shranjeni v tej podatkovni bazi, medtem ko skripte PHP poskrbijo za njihovo
pridobivanje, obdelavo in prikaz uporabnikom na spletnem uporabniškem vmesniku.

3

POGLAVJE 2

Namestitev sistema WordPress

WordPress je znan po svoji enostavni namestitvi – zaradi svoje enostavnosti je namestitev
promovirana kot opravilo, ki traja manj kot pet minut. Zaradi popularnosti WordPressa
številni ponudniki spletnega gostovanja ponujajo orodja za samodejno namestitev
WordPressa v nekaj klikih. V tem učnem gradivu bo v ospredju vzpostavitev lokalnega
razvojnega okolja z orodjem Local in vsebniki Docker ter namestitev WordPressa pri
ponudniku gostovanja.

� Priporočena praksa pri razvoju spletnih mest vključuje vzpostavitev lokalnega
razvojnega okolja, kjer se izvajata razvoj in testiranje. Šele po zaključku razvoja
spletno mesto nato namestimo na produkcijski strežnik in z ustrezno konfiguracijo
povežemo s končno domeno, kar zagotavlja bolj nadzorovano uvedbo ter zmanjšuje
tveganje za napake v produkcijskem okolju.

2.1 Lokalno razvojno okolje s sistemom WordPress

Vzpostavitev lokalnega razvojnega okolja s sistemom WordPress omogoča varen razvoj,
prilagajanje in testiranje spletnega mesta pred njegovo namestitvijo na produkcijskem
strežniku, pri čemer so na voljo tako specializirana orodja za lokalno namestitev
WordPressa, kot je Local, kot tudi splošne rešitve za vzpostavitev lokalnega strežniškega
okolja, kot so XAMPP, WAMP, MAMP in LAMP. V preteklosti je vzpostavitev
razvojnega okolja temeljila predvsem na splošnih rešitvah, ki pa jih v praksi v zadnjih
letih zamenjujejo specializirana orodja. Kljub temu jih v tem učnem gradivu omenjamo,
saj je na spletu zaradi pretekle razširjene uporabe na voljo veliko virov in vodičev o tem.

2.1. Lokalno razvojno okolje s sistemom WordPress

Namesto tega je danes za naprednejše razvijalce priporočljiva namestitev WordPressa
s pomočjo orodja Docker. Vzpostavitev lokalnega razvojnega okolja z navedenimi
orodji se razlikuje glede na kompleksnost namestitve, prilagodljivost okolja, uporabniško
izkušnjo, čas vzpostavitve, namestitev v produkcijsko okolje in platformsko združljivost,
kar prikazuje primerjava v preglednici 2.1. V nadaljevanju tega učnega gradiva bo
predstavljena lokalna namestitev WordPressa s programsko opremo Local in z orodjem
Docker.

Preglednica 2.1. Primerjava pristopov k vzpostavitvi lokalnega razvojnega okolja s
sistemom WordPress.

Značilnost XAMPP / WAMP
/ MAMP / LAMP

Local Docker

Postopek
namestitve

Ročna namestitev in
nastavitev PHP,
Apache in MySQL;
ročna namestitev
WordPressa in
nastavitev WordPressa
(z namestitvenim
čarovnikom v
brskalniku)

Namestitev z nekaj
kliki; avtomatska
konfiguracija okolja z
možnostjo nastavitev z
uporabniškim
vmesnikom

Konfiguracija in
namestitev z Docker
Compose in ukazno
vrstico; ročna
nastavitev WordPressa
(z namestitvenim
čarovnikom v
brskalniku)

Nadzor
nad
okoljem

Visoka prilagodljivost
(različne verzije PHP,
ročna konfiguracija)

Omejena prilagoditev,
vendar zadostuje za
večino potreb

Zelo visoka
prilagodljivost
(poljubne slike in
konfiguracije); možno
reproducirati identično
okolje na različnih
napravah

Uporabniška
izkušnja

Namenjeno tehnično
bolj podkovanim
uporabnikom

Intuitiven uporabniški
vmesnik, primeren
tudi za začetnike

Namenjeno tehnično
zelo podkovanim
uporabnikom

Čas vzpo-
stavitve

Daljši; zahteva več
korakov

Hiter; avtomatiziran
postopek

Daljši; relativno hiter
po prvi nastavitvi, saj
je možno ponovno
uporabiti konfiguracije

Nadaljevanje na naslednji strani

6

Poglavje 2. Namestitev sistema WordPress

Nadaljevanje preglednice 2.1

Značilnost XAMPP / WAMP
/ MAMP / LAMP

Local Docker

Namestitev
v produk-
cijsko
okolje

Ročna migracija;
pogosto zahteva veliko
časa z veliko izzivi

Ročna migracija,
vendar obstaja
vgrajena podpora za
migracijo za določene
ponudnike (v plačljivi
različici orodja)

Ročna ali
avtomatizirana
migracija; pogosto
poteka hitro in brez
večjih izzivov

Platformska
združlji-
vost

Na voljo za Windows,
macOS, Linux
(odvisno od paketa)

Na voljo za Windows
in macOS

Na voljo za Windows,
macOS in Linux
(potreben Docker
Engine/Docker
Desktop)

� Za začetnike, ki se prvič srečujejo z razvojem spletnih strani, priporočamo lokalno
vzpostavitev razvojnega okolja s sistemom WordPress s pomočjo orodja Local. Za
naprednejše bralce priporočamo vzpostavitev z vsebniki Docker.

Za delovanje trenutne različice WordPressa (januar 2026) so priporočljive naslednje
strežniške zahteve: PHP različice 8.3 ali novejše, MySQL različice 8.0 ali novejše oziroma
MariaDB različice 10.6 ali novejše ter podpora za HTTPS. Priporočeni spletni strežniki
so Apache (s podprtimi moduli, npr. mod_rewrite) ali Nginx, vendar WordPress
lahko deluje tudi na drugih strežnikih, ki omogočajo izvajanje kode PHP in povezavo
s podatkovno bazo MySQL/MariaDB. Za okolja, kjer novejše različice še niso na voljo,
WordPress omogoča delovanje tudi s PHP različico 7.2.24 ali novejšo in MySQL različico
5.5.5 ali novejšo, vendar so te že izven uradne podpore in lahko predstavljajo varnostno
tveganje [5].

2.1.1 Vzpostavitev lokalnega razvojnega okolja z orodjem Local

Za vzpostavitev lokalnega okolja za razvoj in upravljanje spletnih mest z WordPressom
z orodjem Local je najprej treba prenesti programsko opremo Local, ki je brezplačno
na voljo za operacijska sistema Windows in macOS na https://localwp.com/. Koraki
ustvarjanja novega projekta so prikazani na slikah 2.1 (a-d), in sicer z uporabo orodja

7

https://localwp.com/

2.1. Lokalno razvojno okolje s sistemom WordPress

Local različice 9.2.8. Po izvedbi namestitve po navodilih je ob zagonu programa
omogočeno ustvarjanje novega spletnega mesta z izbiro možnosti

�� ��Create a new site

(slika 2.1a). V nadaljevanju je treba vnesti ime novega projekta oziroma spletnega mesta
(slika 2.1b). Sledi konfiguracija nastavitev okolja (PHP, strežnik, podatkovna baza), pri
čemer za večino projektov zadostuje izbira privzetih strežniških nastavitev (slika 2.1c).
Sledi še določanje prijavnih podatkov (uporabniško ime in geslo) za privzetega uporabnika
s skrbniškimi pravicami za dostop do nadzorne plošče WordPressa (slika 2.1d). Slednje
potrebujemo za dostop, zato si jih je treba dobro zapomniti ali zabeležiti.

a) Prenos in namestitev orodja Local.

c) Konfiguracija okolja.

b) Poimenovanje spletnega mesta.

d) Ustvarjanje skrbnika.

Slika 2.1. Lokalna vzpostavitev spletnega mesta, ki temelji na sistemu
WordPress, z orodjem Local.

8

Poglavje 2. Namestitev sistema WordPress

Zagon in dostopanje do strani
Po uspešni vzpostavitvi okolja, ki je prikazana na sliki 2.2, je projekt dodan na seznam
lokalnih strani v levem stranskem meniju. Do lokalno vzpostavljenega spletnega mesta
je mogoče dostopati z naslednjima dvema gumboma uporabniškega vmesnika orodja:

• Gumb
�� ��WP Admin , ki preusmeri na prijavno stran nadzorne plošče WordPress, v

katero se je mogoče prijaviti s prej določenimi vpisnimi podatki skrbnika.

• Gumb
�� ��Open site , ki preusmeri na ogled spletne strani kot obiskovalec, tj. končni

uporabnik, spletne strani (odpre vstopno stran spletnega mesta – index.php).

Slika 2.2. Vzpostavljeno lokalno spletno mesto z uporabo orodja Local.

Gumba
�� ��Start site in

�� ��Stop site v zgornjem desnem kotu sta namenjena upravljanju
zagnanih okolij.

•
�� ��Start site zažene vse potrebno za delovanje izbrane WordPress strani: spletni
strežnik (Apache/Nginx), interpreter PHP in podatkovno bazo (MySQL/MariaDB).
Ko je stran zagnana, lahko do nje lokalno dostopamo v brskalniku preko povezave
URL, na primer primer.local ali localhost:9000, odvisno od nastavitev.

9

2.1. Lokalno razvojno okolje s sistemom WordPress

•
�� ��Stop site ustavi delovanje teh procesov. S tem se strežnik in baza ugasneta, stran
pa v brskalniku lokalno ni več dostopna.

� • Če izbrana spletna stran po kliku na gumb
�� ��WP Admin /

�� ��Open site še ni zagnana,
jo orodje Local zažene samodejno.

• Po zagonu strani je do nadzorne plošče WordPress privzeto mogoče dostopati tudi
neposredno preko povezave URL /wp-admin.

• Ko je stran v orodju Local zagnana, lahko alternativno dostopamo do začetne strani
in nadzorne plošče tudi v levem meniju, z desnim klikom na ime strani in izborom�� ��Open site ali

�� ��Admin dashboard .

Datotečni sistem WordPress
Do datotek WordPress spletne strani, vzpostavljene z orodjem Local, lahko dostopamo
tako, da v orodju z desnim klikom na ime strani izberemo možnost

�� ��Site folder . Enak
rezultat dosežemo tudi s klikom na ime strani, kjer se gumb

�� ��Site folder nahaja neposredno
pod imenom. V odprti datotečni strukturi se v direktoriju app/public nahajajo vse
datoteke WordPressa.

� Za razvoj in konfiguracijo je osrednjega pomena direktorij wp-content, ki vsebuje
poddirektorije themes (nameščene in razvite teme), plugins (nameščeni in razviti
vtičniki) ter uploads (naložene datoteke, kot so slike in dokumenti PDF). Prav ta
direktorij združuje vse ključne komponente, ki omogočajo prilagajanje in nadgradnjo
WordPress spletne strani.

Podatkovna baza
Orodje Local omogoča preprost dostop do podatkovne baze z vgrajenim spletnim
orodjem Adminer. Ko odpremo posamezno stran in kliknemo na zavihek

�� ��Database ,
se prikažejo vsi potrebni podatki za povezavo. Od tam lahko z enim klikom na
gumb

�� ��Open Adminer dostopamo do zbirke podatkovne baze izbranega spletnega mesta
neposredno v brskalniku.

10

Poglavje 2. Namestitev sistema WordPress

� Alternativno lahko do podatkovne zbirke dostopamo tudi z drugimi orodji, kot so
phpMyAdmin, DBeaver, HeidiSQL ali MySQL Workbenc. V tem primeru je treba
uporabiti podatke za ustvarjanje povezave, ki jih Local prikaže v zavihku

�� ��Database
(ime zbirke, uporabniško ime, geslo, gostitelj in vrata).

2.1.2 Vzpostavitev lokalnega razvojnega okolja z vsebniki Docker

V sodobnem razvoju je zaradi uporabe ponovljivega in izoliranega okolja za razvoj ter
poznejšo namestitev v produkcijsko okolje vse pogostejša uporaba orodja Docker. Docker
omogoča opis celotnega zagonskega okolja v slikah (angl. Images), ki predstavljajo
nespremenljive predloge datotečnega sistema s pripadajočo konfiguracijo. Na podlagi
takšne slike nato zaženemo vsebnik (angl. Container), tj. izvajalni primerek slike, ki teče
v izolaciji od gostiteljskega sistema in drugih vsebnikov.

Predpogoj za vzpostavitev lokalnega razvojnega okolja WordPress z vsebniki Docker
je nameščeno orodje Docker Desktop oziroma Docker Engine (vključno z Docker Compose
v2, ki bo omogočil zagon in upravljanje več vsebnikov hkrati). Pri tem je treba z uporabo
ustreznih datotek Dockerfile izgraditi lastne slike ali pa uporabiti obstoječe slike, ki jih
lahko najdemo v registru Docker, kot je Docker Hub.

� Zaradi razširjenosti zagonskih okolij, ki jih potrebujemo za vzpostavitev lokalnega
razvojnega okolja za delo z WordPressom, najpogosteje uporabljamo obstoječe slike,
kot so uradna Docker slika za WordPress (https://hub.docker.com/_/wordpress),
uradna Docker slika za MySQL (http://hub.docker.com/_/mysql) in uradna Docker
slika za phpMyAdmin (https://hub.docker.com/_/phpmyadmin).

Za vzpostavitev okolja si je najprej treba pripraviti ustrezno datotečno strukturo
projekta, kot je prikazano na primeru 2.1.1. Datoteka compose.yaml služi kot
nastavitvena datoteka, medtem ko bo direktorij wp-content služil kot trajna shramba v
lokalnem datotečnem sistemu za sinhronizacijo istoimenskega direktorija med vsebnikom
in lokalnim datotečnim sistemom.

11

https://hub.docker.com/_/wordpress
http://hub.docker.com/_/mysql
https://hub.docker.com/_/phpmyadmin

2.1. Lokalno razvojno okolje s sistemom WordPress

Primer 2.1.1 (Datotečna struktura projekta za vzpostavitev lokalnega razvojnega
okolja z vsebniki Docker.)

compose.yaml
wp-content

V nastavitveni datoteki compose.yaml definiramo storitve (WordPress, podatkovna
baza in po želji orodje za delo s podatkovno bazo, kot je phpMyAdmin), trajne volumne
in osnovne omrežne nastavitve, kot je prikazano na primeru 2.1.2. Za definicijo storitev
WordPress in podatkovne baze v tem primeru uporabimo dve uradni Docker sliki, ki
sta bili predhodno omenjeni. Takšna konfiguracija omogoča vzpostavitev WordPressa
na strežniku Apache s podporo jezika PHP in ločeno vzpostavitev podatkovne zbirke v
podatkovni bazi MySQL. Z namenom poenostavitve v primer nismo vključili vzpostavitve
orodja za delo s podatkovno bazo, kar bi storili na podoben način kot za preostali
dve storitvi. V podanih nastavitvah je s pomočjo trajnih volumnov vključeno tudi
sinhroniziranje lokalnega direktorija wp-content z istoimenskim direktorijem v vsebniku
wordpress, kar omogoča, da so lokalno izvedene spremembe v direktoriju vidne takoj.

Primer 2.1.2 (Vsebina nastavitvene datoteke compose.yaml za vzpostavitev
lokalnega razvojnega okolja z vsebniki Docker.)

services:

wordpress:

image: wordpress:6.8.3-php8.1-apache

environment:

WORDPRESS_DB_HOST: db

WORDPRESS_DB_USER: uporabnik

WORDPRESS_DB_PASSWORD: geslo

WORDPRESS_DB_NAME: wordpress

WORDPRESS_TABLE_PREFIX: wp_

volumes:

- ./wp-content:/var/www/html/wp-content

restart: unless-stopped

ports:

- 8080:80

12

Poglavje 2. Namestitev sistema WordPress

db:

image: mysql:8.0

environment:

MYSQL_DATABASE: wordpress

MYSQL_USER: uporabnik

MYSQL_PASSWORD: geslo

MYSQL_RANDOM_ROOT_PASSWORD: '1'

volumes:

- db_data:/var/lib/mysql

restart: unless-stopped

volumes:

db_data:

� Vzpostavitev razvojnega okolja z orodjem Docker prinaša visoko stopnjo
prilagodljivosti, saj ga lahko enostavno prilagodimo posebnim zahtevam in željam.
Predstavljeni primeri vzorčne vzpostavitve predstavljajo dobro izhodišče za učinkovit
razvoj spletnih rešitev, temelječih na WordPressu. Seveda so možne (in smiselne)
nadaljnje prilagoditve.

Za uporabo vsebnikov v lokalnem okolju je vedno treba imeti zagnano orodje Docker
Desktop oziroma Docker Engine. Za prvi zagon vsebnikov je treba v ukazni vrstici izvesti
ukaz iz primera 2.1.3. Naveden ukaz bo po potrebi prenesel vse slike, če še niso bile
prenesene, in v odklopljenem načinu ustvaril ter zagnal vse vsebnike, definirane v datoteki
compose.yaml. Dostop do WordPress spletnega mesta bo nato glede na nastavitve možen
v brskalniku na povezavi URL localhost:8080.

Primer 2.1.3 (Ukaz v ukazni vrstici za prvi zagon vsebnikov Docker za vzpostavitev
lokalnega razvojnega okolja WordPress.)

$ docker compose up -d

Ob prvi vzpostavitvi WordPressa z vsebniki Docker je treba ročno nastaviti WordPress
z namestitvenim čarovnikom v brskalniku, kot je prikazano na slikah 2.3 (a-d). Ta zajema
nekaj kratkih korakov, v katerih je treba nastaviti jezik vmesnika, naslov spletnega mesta
in ustvariti uporabnika s skrbniškimi pravicami za dostop do nadzorne plošče WordPress.

13

2.1. Lokalno razvojno okolje s sistemom WordPress

Po uspešni namestitvi je z ustvarjenim uporabnikom možna prijava v nadzorno ploščo
WordPress.

a) Izbira jezika vmesnika.

c) Namestitev WordPressa.

b) Nastavitve spletnega mesta.

d) Prijava v nadzorno ploščo WordPress.

Slika 2.3. Nastavitev WordPressa z namestitvenim čarovnikom v brskalniku.

Za nadaljnje delo z vsebniki Docker so v primeru 2.1.4 navedeni pogosto uporabljeni
in koristni ukazi. Najpogosteje se za vsakodnevno rabo uporabljata prva dva ukaza, ki
omogočata zagon in zaustavitev vsebnikov.

Primer 2.1.4 (Ukazi v ukazni vrstici za nadaljnje delo z vsebniki Docker v
vzpostavljenem lokalnem razvojnem okolju WordPress.)

Zagon/zaustavitev vsebnikov

$ docker compose start

$ docker compose stop

Dostop v vsebnik (npr. wordpress)

$ docker compose exec wordpress bash

Zaustavitev in odstranjevanje vsebnikov

$ docker compose down

14

Poglavje 2. Namestitev sistema WordPress

Zaustavitev in odstranjevanje vsebnikov, vključno z volumni

$ docker compose down -v

2.2 Namestitev sistema WordPress pri ponudniku gosto-

vanja

Namestitev WordPressa pri ponudniku gostovanja lahko izvedemo na več načinov,
najpogosteje pa se uporabljata avtomatizirana namestitev ali ročna namestitev znotraj
nadzorne plošče ponudnika gostovanja. Pri tem lahko uporabimo različne načine dostopa
do datotečnega sistema spletnega mesta in podatkovne zbirke na oddaljenem strežniku,
kar je podrobneje predstavljeno v poglavju 5.5. Za začetnike je vsekakor primernejša
avtomatizirana namestitev, saj je hitra in enostavna, medtem ko je ročna namestitev
namenjena bolj naprednim razvijalcem, ki želijo popoln nadzor nad postopkom in
nastavitvami.

Pri avtomatizirani namestitvi, ki jo ponuja večina ponudnikov, so v nadzorni plošči,
kot je cPanel, Plesk ali DirectAdmin, na voljo aplikacije (npr. Softaculous, Installatron
ali lastna orodja), ki omogočajo enostavno, enoklikno namestitev WordPressa. Razvijalec
običajno v nadzorni plošči poišče WordPress, klikne gumb

�� ��Install Now in vnese osnovne
podatke. V postopku je treba izbrati različico WordPressa, protokol za prenos informacij
(priporočeno je HTTPS, če je nameščen certifikat SSL), domeno, naslov in slogan spletne
strani, uporabniško ime in geslo za skrbniški dostop, e-naslov, jezik ter direktorij, če
želimo, da je WordPress nameščen v poddirektoriju. S klikom na gumb

�� ��Install sistem
samodejno ustvari podatkovno zbirko in namesti WordPress.

Druga možnost je ročna namestitev, ki jo uporabimo, kadar ponudnik avtomatizirane
namestitve ne omogoča ali želimo večji nadzor nad postopkom in nastavitvami. Najprej
je treba prenesti WordPress z uradne strani in prenesene datoteke naložiti na strežnik
v direktorij public_html. To lahko storimo bodisi prek odjemalca FTP/SFTP, kot
je FileZilla, bodisi prek nadzorne plošče orodja ponudnika gostovanja, kot je cPanel, z
orodjem (Online) File Manager. Nato je prek nadzorne plošče ponudnika gostovanja, kot
je cPanel, treba ustvariti podatkovno zbirko ter uporabnika z uporabniškim imenom
in geslom, mu dodeliti ustrezne pravice ter povezati uporabnika z novo ustvarjeno
podatkovno zbirko. Podatke o imenu podatkovne zbirke, uporabniškem imenu in geslu

15

2.2. Namestitev sistema WordPress pri ponudniku gostovanja

si je treba zabeležiti, saj jih je treba vnesti v konfiguracijsko datoteko wp-config.php.
To datoteko lahko uredimo prek FTP/SFTP ali neposredno prek nadzorne plošče, kot
je cPanel, z orodjem (Online) File Manager. Ko so nastavitve urejene, v brskalniku
odpremo domeno in zažene se namestitveni čarovnik (podoben tistemu, ki je predstavljen
na slikah 2.3 (a-d) v predhodnem podpoglavju). V njem izberemo jezik in vnesemo
zahtevane podatke, kot so naslov spletne strani, uporabniško ime in geslo za skrbniški
dostop ter e-naslov. Postopek zaključimo s klikom na gumb

�� ��Install WordPress .
V obeh primerih se po uspešni namestitvi v nadzorno ploščo WordPress prijavimo

na povezavi URL https://ime-domene.si/wp-admin, kjer za dostop uporabimo
uporabniško ime in geslo, določeno med namestitvijo.

� • Pred namestitvijo WordPressa pri ponudniku gostovanja je treba najprej izbrati
ustrezen paket gostovanja in zakupiti domeno.

• Na slovenskem trgu je na voljo več ponudnikov gostovanja, med bolj znanimi
so na primer NEOSERV, Domenca, Domovanje in Hostko, poleg njih pa lahko
uporabimo tudi tuje ponudnike, kot so na primer SiteGround, Bluehost, Hostinger
ali DreamHost.

• Pred nakupom paketa gostovanja je priporočljivo preveriti, ali ta podpira vse
potrebne tehnične zahteve za delovanje WordPressa. Ključne so podpora za PHP,
podatkovna baza MySQL oziroma MariaDB ter certifikat SSL, ki omogoča varno
povezavo prek protokola HTTPS.

16

POGLAVJE 3

Osnovno delo s sistemom
WordPress

Skrbniški vmesnik WordPress je sestavljen iz več funkcionalnih sklopov, ki omogočajo
učinkovito upravljanje spletnega mesta. Skrbniški vmesnik (včasih poimenovan tudi
nadzorna plošča kot splošen izraz vmesnika za vse uporabnike, ne glede na vlogo
in dovoljenja) je oblikovan po enakem principu ne glede na velikost in kompleksnost
vzpostavljenega WordPress projekta. V levem stranskem meniju je glavna navigacija,
ki omogoča dostop do vsebinskih modulov, kot so prispevki, strani, medijske vsebine,
komentarji, izgled, vtičniki, uporabniki in nastavitve. Zgornji del vmesnika zavzema
orodna vrstica, ki ponuja bližnjice do najpogosteje uporabljenih funkcionalnosti, kot so
dodajanje nove vsebine, dostop do profila uporabnika ter hiter preklop med nadzorno
ploščo in uporabniškim pogledom strani. Takšna struktura omogoča jasno ločitev med
različnimi upravljavskimi nalogami in prispeva k preglednosti sistema. Pregled osnovnih
delov vmesnika je prikazan na sliki 3.1.

3.1 Strani

V sistemu WordPress so statične vsebine običajno organizirane v obliki strani (angl.
Pages), ki se uporabljajo za prikaz informacij, kot so kontaktni podatki, predstavitev
podjetja ali organizacije, pogoji uporabe, politika zasebnosti ter druge vsebine, ki se
redkeje posodabljajo. Uporabniki lahko ustvarijo poljubno število strani, ki so nato
vključene v navigacijo spletnega mesta. Stran je sestavljena iz naslova, vsebine ter
dodatnih nastavitev, kot so naslov URL, vidnost in naslovna slika. Vizualno in vsebinsko

3.1. Strani

Slika 3.1. Pregled osnovnih delov skrbniškega vmesnika WordPress.

urejanje strani privzeto poteka z blokovnim urejevalnikom, kjer je vsaka vsebinska enota
predstavljena kot samostojen blok (več o tem v poglavju 6.2). Postopek dodajanja nove
strani in osnovni elementi urejevalnika so prikazani na sliki 3.2. Po zaključku dodajanja
vsebine je treba stran objaviti (gumb

�� ��Objavi). Če urejanje vsebine še ni zaključeno, je
stran mogoče shraniti tudi kot osnutek. Prav tako je mogoče vnaprej določiti datum in
uro objave strani.

Slika 3.2. Dodajanje in urejanje strani.

18

Poglavje 3. Osnovno delo s sistemom WordPress

3.2 Prispevki

Prispevki (angl. Posts) se v WordPressu uporabaljajo za dodajanje dinamičnih vsebin,
kot so novice, obvestila, članki ali druge objave, ki se običajno prikazujejo v kronološkem
zaporedju na domači strani ali v blog sekciji spletnega mesta. Vsak prispevek vključuje
naslov, vsebino in nabor nastavitev, kot so avtor, kategorija, oznake, naslovna slika,
povzetek in možnosti komentiranja. Prispevke je mogoče organizirati z uporabo ustreznih
taksonomij (angl. Taxonomies), in sicer privzeto s pomočjo kategorij (angl. Categories) in
s pomočjo oznak (angl. Tags), kar olajša razvrščanje ter omogoča boljšo strukturo vsebin.
Podobno kot pri urejanju strani uporabniški vmesnik omogoča preprosto urejanje novih
prispevkov z blokovnim urejevalnikom (več o tem v poglavju 6.2). Postopek ustvarjanja
prispevka in ključne komponente vmesnika so prikazani na sliki 3.3. Postopek je podoben
dodajanju strani.

Stran ali prispevek? Prispevki se uporabljajo za vsebine, ki se redno po-
sodabljajo in so v kronološkem zaporedju – na primer novice, blog objave
ali obvestila. Omogočajo kategorizacijo, označevanje in vključujejo možnost
komentiranja. Strani pa so namenjene statičnim vsebinam, kot so »O nas«,
»Kontakt«, »Pogoji uporabe«, in običajno ne vključujejo datumov, taksonomij ali
komentarjev. Uporaba ustreznega tipa prispevka pripomore k boljši organizaciji
in uporabniški izkušnji spletnega mesta.

Kategorija ali oznaka? Kategorijo izberemo, ko želimo prispevek uvrstiti v eno
izmed glavnih tem na naši strani (npr. »Recepti«, »Novice«, »Poletna ponudba«).
Vsak prispevek mora imeti vsaj eno kategorijo. Če te ne izberemo, WordPress
vsebine privzeto uvrsti v kategorijo z imenom »Nekategorizirano«. Kategorije
je mogoče organizirati hierarhično – vsaka kategorija ima lahko nadrejene in
podrejene kategorije. To omogoča gradnjo logične strukture, kjer so širše teme
na vrhu hierarhije, natančnejše ali bolj specifične pa razporejene pod njimi (npr.
kategorija »Recepti« ima lahko podrejene kategorije »Zajtrki«, »Juhe«, »Glavne
jedi« in »Sladice«, vsaka od njih pa ima lahko še podrobnejše podkategorije,
npr. kategorija »Juhe« ima lahko podkategorije »Zelenjavne juhe«, »Mesne juhe«,
»Kremne juhe«). Oznake pa dodamo, ko želimo podrobneje opisati vsebino (npr.
»poletna ohladitev«, »vegansko«, »hitra priprava«). Oznake niso hierarhične in

19

3.3. Medijske vsebine

Slika 3.3. Dodajanje in urejanje prispevkov.

služijo kot dodatni opisni elementi, ki bralcem (in iskalnikom) pomagajo lažje najti
sorodne prispevke. En prispevek ima lahko poljubno število oznak, pri čemer naj
bodo te čim bolj specifične in smiselne. Na primer prispevek v kategoriji »Juhe«
s podkategorijo »Zelenjavne juhe« lahko vsebuje oznake »buča«, »jesensko«,
»vegansko« in »preprosto«.

3.3 Medijske vsebine

WordPress omogoča enostavno dodajanje in upravljanje medijskih vsebin z zavihkom
Predstavnost (angl. Media). Uporabniki lahko naložijo slike (npr. .JPEG, .PNG, .GIF,
.WEBP), dokumente (npr. .PDF), zvočne posnetke (npr. .MP3) in videoposnetke (npr.
.MP4), ki jih nato vključujejo v prispevke, strani ali druge vsebine. Nalaganje poteka prek
grafičnega vmesnika, ki omogoča funkcionalnost povleci-in-spusti (angl. Drag-and-Drop)
ali klasičen izbor datotek s pomočjo raziskovalca na računalniku. WordPress privzeto
omejuje velikost posamezne datoteke pri nalaganju, pri čemer je največja dovoljena
velikost običajno določena na strežniški ravni in se najpogosteje giblje od 2 MB do 64 MB,
odvisno od nastavitev gostovanja. Osnovni pregled nalaganja in upravljanja z medijskimi

20

Poglavje 3. Osnovno delo s sistemom WordPress

vsebinami je prikazan na sliki 3.4.

Slika 3.4. Dodajanje in urejanje medijskih vsebin.

3.4 Videz

V zavihku Videz (angl. Appearance) v nadzorni plošči WordPressa lahko upravljamo
z vizualnim izgledom spletnega mesta. Ključni element tega zavihka so teme (angl.
Themes), ki določajo splošen celosten izgled spletnega mesta – od postavitve in tipografije
do barv in slogov posameznih elementov. Teme so zbirke datotek, ki skupaj določajo videz
spletnega mesta za končne uporabnike. Obstajata dva tipa tem, klasične teme (angl.
Classic Themes) in blokovne teme (angl. Block Themes), ki se razlikujejo glede na način
urejanja teme, strukturo datotek ter obseg vizualnih prilagoditev brez kode. Lastnosti in
razlike obeh tipov tem so podrobneje predstavljene v poglavju 5.3. V zavihku Videz lahko
teme iščemo, nameščamo, aktiviramo in prilagajamo, pri čemer razpoložljive možnosti
prilagoditev določa posamezna tema. Primer upravljanja z nastavitvami klasične teme je
prikazan na sliki 3.5, medtem ko je upravljanje z nastavitvami blokovne teme prikazano
na sliki 3.6. Pri sodobnih blokovnih temah je na voljo tudi urejevalnik spletnega mesta
(angl. Site Editor), ki omogoča neposredno urejanje predlog in slogov brez poseganja v
programsko kodo.

21

3.5. Vtičniki

Slika 3.5. Nastavitve klasične teme (tema Astra).

Slika 3.6. Nastavitve blokovne teme (tema Twenty Twenty-Five).

3.5 Vtičniki

V zavihku Vtičniki (angl. Plugins) v nadzorni plošči WordPress lahko iščemo,
nameščamo, aktiviramo in upravljamo z vtičniki. Vtičniki v WordPressu so razširitve, ki
dodajajo ali spreminjajo funkcionalnosti spletnega mesta brez poseganja v izvorno kodo

22

Poglavje 3. Osnovno delo s sistemom WordPress

jedra WordPressa. Razvijalcem omogočajo, da po potrebi razširijo osnovne zmogljivosti
sistema, na primer z dodajanjem obrazcev, varnostnih mehanizmov, analitike ali integracij
z zunanjimi storitvami. Vtičniki temeljijo na uporabi WordPress razredov, funkcij
in dogodkov, s katerimi se vključujejo v delovanje WordPressa in drugih vtičnikov.
Zaradi modularne zasnove omogočajo popolno prilagodljivost spletnega mesta. Pregled
upravljanja z vtičniki v nadzorni plošči WordPress je predstavljen na sliki 3.7, medtem
ko so vtičniki podrobneje predstavljeni v poglavju 7.

Slika 3.7. Upravljanje z vtičniki.

3.6 Uporabniki

V WordPressu je upravljanje uporabnikov ključno za upravljanje nadzora nad dostopom
in vsebinami na spletnem mestu. Sistem omogoča dodeljevanje različnih uporabniških
vlog, odvisno od njihove odgovornosti in nalog. Vsaka vloga ima vnaprej določena
dovoljenja, ki omejujejo ali omogočajo določene funkcionalnosti, kot so objavljanje
prispevkov, urejanje strani, upravljanje tem in vtičnikov ali spreminjanje nastavitev.
Na ta način je mogoče vzpostaviti varno sodelovanje več uporabnikov brez tveganja
nenamernih sprememb ali zlorab. Dodajanje uporabnikov je prikazano na sliki 3.8.

23

3.6. Uporabniki

Slika 3.8. Dodajanje uporabnikov.

V preglednici 3.1 so predstavljene osnovne vloge uporabnikov, ki jih WordPress ponuja
privzeto, skupaj z njihovimi osrednjimi dovoljenji.

Preglednica 3.1. Osnovne vloge uporabnikov z osrednjimi pripadajočimi dovoljenji [6].
Vloga Opis in dovoljenja
Skrbnik
(angl. Administrator)

Ima popoln nadzor nad spletnim mestom, vključno z
upravljanjem tem, vtičnikov in uporabnikov. Lahko dodaja,
ureja, objavlja in briše prispevke ter strani. Primerna le za
zaupanja vredne osebe z najvišjimi pravicami.

Urednik
(angl. Editor)

Lahko dodaja, ureja, objavlja in briše vse prispevke in strani –
tudi od drugih uporabnikov. Primeren za odgovorne osebe, ki
skrbijo za celotno vsebinsko strukturo.

Avtor
(angl. Author)

Lahko dodaja, ureja, objavlja in briše le lastne prispevke.
Nima dostopa do strani ali nastavitev. Primeren za redne
pisce vsebin.

Sodelavec
(angl. Contributor)

Lahko dodaja, ureja in briše lastne osnutke prispevkov,
vendar ne more objavljati prispevkov. Objavo mora potrditi
uporabnik z višjimi pravicami.

Naročnik
(angl. Subscriber)

Ima dostop do osebnega profila, ki ga lahko upravlja, in lahko
komentira prispevke (če je omogočeno), vendar nima
uredniških pravic. Uporaben za registrirane bralce ali stranke.

24

Poglavje 3. Osnovno delo s sistemom WordPress

� Skladno z dobrimi praksami informacijske varnosti je priporočljivo, da se vloge
dodeljujejo po načelu najmanjših privilegijev (angl. Principal Least Privilege). To
pomeni, da nobena oseba ne sme imeti več dovoljenj, kot je najnujnejše za opravljanje
njenega dela [7].

3.7 Nastavitve

Nastavitve WordPressa so osrednje izhodišče za prilagoditev osnovnih in naprednih
parametrov spletnega mesta. Do njih dostopamo prek zavihka Nastavitve (angl. Settings)
v skrbniškem vmesniku. V nadaljevanju so predstavljeni posamezni sklopi nastavitev, ki
uporabniku omogočajo nadzor nad delovanjem in prikazom strani:

• Splošne nastavitve (angl. General) so prikazane na sliki 3.9 in vključujejo ključne
informacije o spletnem mestu. Vključujejo določitev naslova spletne strani (angl.
Site Title) in slogana (angl. Tagline), ki se pogosto prikazujeta v naslovni
vrstici brskalnika in kot metapodatka za iskalnike. Naslov URL za WordPress
(angl. WordPress Address (URL)) in naslov URL spletišča (angl. Site Address
(URL)) določata, kje je nameščeno jedro WordPressa in katera domena predstavlja
dostopno spletno mesto. Kontaktni e-naslov skrbnika je uporabljen za pošiljanje
sistemskih obvestil. Možno je omogočiti registracijo uporabnikov in določiti privzeto
uporabniško vlogo za nove registrirane uporabnike. Na voljo so tudi jezikovne
nastavitve, časovni pas in format prikaza datuma ter ure. Nadzorno ploščo je med
drugim mogoče uporabljati tudi v slovenskem jeziku.

• Nastavitve pisanja (angl. Writing) omogočajo nastavitev privzete kategorije in
oblike novih prispevkov. Na voljo so možnosti za obveščanje o objavi prispevka
prek elektronske pošte in nastavitev storitev, ki obveščajo ob novi objavi vsebin.

• Nastavitve branja (angl. Reading) vplivajo na prikaz domače strani, pri čemer je
možno izbirati med prikazom najnovejših prispevkov ali uporabo statične strani. V
tem razdelku se prav tako določa število prikazanih prispevkov na posamezni strani
in možnost, da spletnim iskalnikom odsvetujemo indeksiranje spletnega mesta, kar
je koristno med razvojem.

25

3.7. Nastavitve

• Nastavitve razprave (angl. Discussion) ponujajo upravljanje komentarjev. Vključu-
jejo možnost omogočanja ali onemogočanja komentarjev, nadzor nad obveščanjem,
moderiranjem, uporabo avatarjev ter druge nastavitve, povezane z interakcijo
uporabnikov.

• Nastavitve medijskih vsebin (angl. Media) omogočajo določitev privzetih dimenzij
slik, ki se samodejno ustvarijo ob nalaganju (npr. sličica, srednja in velika velikost).
Možno je tudi organizirati medijske datoteke po datumu nalaganja.

• Trajne povezave (angl. Permalinks) določajo strukturo povezav prispevkov. Na
voljo je izbira med več vnaprej definiranimi oblikami (npr. na osnovi ID-ja, naslova,
datuma) ali določitev prilagojene strukture povezav URL, kar vpliva na berljivost
in optimizacijo spletnega mesta za iskalnike.

• Zasebnost (angl. Privacy) omogoča izbiro strani z izjavo o zasebnosti, kar je zlasti
pomembno za skladnost s predpisi o varstvu osebnih podatkov (npr. GDPR).
WordPress omogoča ustvarjanje nove strani z vnaprej pripravljenim besedilom, ki
se lahko dodatno prilagodi glede na potrebe spletnega mesta.

Slika 3.9. Splošne nastavitve WordPress spletnega mesta.

26

POGLAVJE 4

Priprava in prilagoditev spletnih
vsebin za objavo

To poglavje je namenjeno pripravi in prilagoditvi spletnih vsebin v kontekstu WordPressa
za objavo s ciljem boljše vidnosti v spletnih iskalnikih. Pri tem upoštevamo smernice s
področja optimizacije za spletne iskalnike (angl. Search Engine Optimization ali SEO).
Optimizacijo je treba razumeti kot neprestan proces prilagajanja vsebin in tehničnih
lastnosti ter nastavitev spletnega mesta, da jih iskalniki lažje preiščejo, indeksirajo in
ustrezno uvrstijo v rezultate iskanja. Optimizacijo vsebin za iskalnike v tem poglavju
obravnavamo kot nabor konkretnih odločitev pri pisanju, strukturiranju in objavljanju
vsebin. Prilagoditve vsebin so osredotočene na jasnost, berljivost in ustreznost, brez
poudarka na trikih ali zavajanju iskalnikov.

4.1 Notranji in zunanji dejavniki ter metrike optimizacije

vsebin za iskalnike

V praksi optimizacijo za iskalnike pogosto ločimo glede na notranje in zunanje vidike.
Pri tem razlikujemo med dejavniki, ki določajo, kaj in kako pripravimo ter prilagodimo,
ter metrikami, s katerimi učinek merimo.

Notranje metrike (angl. On-Site) nakazujejo, kako dobro je vsebina na spletni strani
tehnično in vsebinsko pripravljena za iskalnike in uporabnike. Iskalniki vsebino obdelujejo
prek strukture strani (HTML/DOM) in metapodatkov ter jo po potrebi tudi upodabljajo,
zato so ključni jasna informacijska struktura, pravilna raba naslovov, smiselni URL-ji,
ustrezno zapisani metapodatki (npr. opisi za izsek v rezultatih iskanja), alternativni opisi

4.2. Dobre prakse optimizacije vsebin za iskalnike

slik (atribut alt) ter premišljena uporaba ključnih besed in taksonomij. Vsebina mora
biti razumljiva, logično razdeljena in pisana predvsem za uporabnika, ne za algoritem.
Pretiravanje s ključnimi besedami ali tehnične napake vodijo v slabše uvrstitve [8].

Zunanje metrike (angl. Off-Site) kažejo, kako je spletna stran umeščena v širši
splet. Med najpomembnejše signale sodijo povezave z drugih spletnih mest. Več kot
je kakovostnih in relevantnih povezav, večji ugled lahko pripišemo strani in višje se
lahko uvrsti v rezultatih iskanja. Vse povezave niso enakovredne – povezave z zaupanja
vrednih in uveljavljenih strani praviloma štejejo bistveno več kot množica nepomembnih.
Sem sodijo tudi omembe in deljenje vsebin na zunanjih platformah (npr. družbena
omrežja) [8].

4.2 Dobre prakse optimizacije vsebin za iskalnike

Optimizacija vsebin na spletnem mestu ne obsega le enkratne prilagoditve, temveč
predstavlja neprestan niz majhnih in doslednih dejanj ter odločitev. Spodnji seznam
zajema izbrane pogoste dobre prakse, ki posredno ali neposredno vplivajo na indeksiranje
vsebin in spletnega mesta v iskalnikih [9, 10].

• Kratek URL – URL naj bo kratek, pomenski in brez nepotrebnih parametrov. Iz na-
slova mora biti vsebina strani takoj jasna. Primer: /recept/cokoladni-piskoti

namesto /index.php?id=123&lang=sl.

• Alternativni opis pri slikah – vsaka slika mora imeti alternativni opis
(atribut alt), ki opisuje dejansko vsebino slike. To izboljša razumevanje vsebine
s strani iskalnikov in dostopnost za uporabnike z bralniki zaslona. Izjeme so
dekorativne slike (npr. slika vodoravne črte, ki predstavlja vizualno razmejitev).
Primer: alt="Čokoladni piškot" namesto alt="slika1" .

• Pravilna uporaba prispevkov ali strani – kot je bilo omenjeno v poglavju 3.2,
so prispevki namenjeni časovno vezanim vsebinam, strani pa trajnim informacijam.
Napačna raba vodi v slabšo informacijsko arhitekturo. Primer: Novice in recepte
objavljamo kot prispevke, opis spletnega mesta kot kuharske platforme z recepti pa
kot stran.

28

Poglavje 4. Priprava in prilagoditev spletnih vsebin za objavo

• Uporaba taksonomij – kategorije in oznake naj bodo smiselne, omejene in dosledno
uporabljene. Njihov namen je strukturiranje vsebine in lažja navigacija. Primer:
Ena vsebinska kategorija in nekaj natančnih oznak namesto več skoraj identičnih
kategorij.

• Kratki opisi – kratki opisi kot metapodatki naj povzamejo bistvo vsebine. Naj
bodo informativni, jedrnati in vsebinsko skladni z dejansko vsebino strani. Primer:
1–2 povedi, ki jasno odgovorita, kaj lahko uporabnik na strani pričakuje.

• Prelomi »Preberi več« – prelomi izboljšajo preglednost daljših vsebin in omogo-
čajo hitrejši pregled objav. Uporabnik se sam odloči za nadaljnje branje. Primer:
Povzetek prispevka na arhivski strani in celotna vsebina na podstrani.

• Relevantne povezave – notranje in zunanje povezave morajo biti vsebinsko
smiselne in kontekstualno umeščene. Pomagajo uporabniku pri razumevanju teme
in iskalniku pri vzpostavljanju povezav med pojmi. Primer: Povezava na sorodno
vsebino (npr. recept) ali zaupanja vreden zunanji vir, ne generične ali zavajajoče
povezave tipa »klikni tukaj«.

• Optimizacija slik – slike naj bodo ustreznih dimenzij in stisnjene. Primer: Brez
nalaganja izvornih fotografij visoke ločljivosti, če to ni nujno potrebno.

• Upravljanje predpomnjenja – predpomnjenje se nanaša na mehanizem, pri
katerem se statične ali redko spreminjajoče vsebine shranijo v začasni pomnilnik,
da se ob ponovnem obisku ne generirajo in ne nalagajo znova. S tem se zmanjša
obremenitev strežnika in bistveno pospeši nalaganje strani. Primer: predpomnjenje
na ravni strežnika ali znotraj WordPressa.

4.3 Analiza optimizacije za iskalnike

Analiza optimizacije za iskalnike temelji na sistematičnem preverjanju tehničnih in
vsebinskih dejavnikov, ki vplivajo na odkrivanje, indeksiranje ter vidnost spletnega mesta
v iskalnikih. V praksi se za osnovno diagnostično preverjanje pogosto uporabljajo orodja,
bodisi namenska orodja za analizo optimizacije za iskalnike bodisi splošna orodja za
analizo kakovosti spletnih mest, kot je Google Lighthouse [11].

29

4.3. Analiza optimizacije za iskalnike

Lighthouse na izbrani strani izvede nabor analiz in poda ocene ter priporočila za
ključna področja, ki predstavljajo tehnične predpogoje in dobre prakse za iskalnike.
Med tipičnimi preverjanji so prisotnost in osnovna pravilnost meta oznak (npr. meta
opis), raba naslovnih elementov, berljivost URL-jev, dostopnost slik z alternativnimi
opisi, osnovna mobilna prilagoditev (npr. pravilna raba viewport) ter druge temeljne
tehnične nastavitve. Pomembno je poudariti, da Lighthouse ne izvede celovite analize
optimizacije za iskalnike in hkrati prav tako ne more nadomestiti vsebinske presoje (npr.
ustreznosti, namena iskanja in kakovosti vsebine), temveč služi kot hiter pregled pogostih
pomanjkljivosti na strani. Pomemben del analize je tudi povezava z zmogljivostjo strani.
Hitrost nalaganja, velikost slik, število zahtevkov in uporaba predpomnjenja vplivajo na
zmogljivost ter uporabniško izkušnjo, kar lahko posredno vpliva tudi na razvrstitev v
iskalnih rezultatih. Zato se analiza optimizacije za iskalnike ne omejuje le na vsebino,
temveč vključuje tudi tehnične vidike delovanja strani. Lighthouse rezultate predstavi
v obliki številčnih ocen in konkretnih priporočil. Namen analize ni doseganje popolne
ocene, temveč prepoznavanje ključnih pomanjkljivosti in razumevanje, kako posamezni
popravki vplivajo na uporabnost in tehnično kakovost strani. Orodje je zato primerno
kot diagnostični pripomoček, ki omogoča ponovljivo analizo in primerjavo stanja pred
optimizacijo in po njej.

� Pri optimizaciji za iskalnike je nujno preveriti tudi sistemske nastavitve v nadzorni
plošči WordPressa. V nastavitvah Branje mora biti možnost »Vidnost na iskalnikih«
izklopljena, kot je prikazano na sliki 4.1. Omogočena nastavitev namreč spletnim
iskalnikom posreduje priporočilo, naj spletnega mesta ne indeksirajo, ne glede na sicer
ustrezno optimizacijo vsebine.

Slika 4.1. Nastavitve branja v nadzorni plošči WordPress.

30

POGLAVJE 5

Datotečna struktura v sistemu
WordPress

V prejšnjih poglavjih so bile predstavljene osnovne funkcionalnosti jedra WordPressa, ki
omogočajo upravljanje spletnih vsebin. A le redko uporaba zgolj osnovnih funkcionalnosti
zadostuje za razvoj in upravljanje spletne rešitve. Najpogosteje je treba uporabiti
vizualne prilagoditve z uporabo tem, funkcionalne prilagoditve z uporabo vtičnikov in
druge prilagoditve, ki zahtevajo dobro poznavanje jedra WordPressa. V nadaljevanju
bodo predstavljeni ključni direktoriji in datoteke WordPress, shema podatkovne zbirke,
hierarhija predlog in načini dostopa do datotek ter podatkovne zbirke.

5.1 Ključni direktoriji in datoteke

Korenski direktorij WordPress projekta, primer katerega je prikazan na primeru 5.1.1,
vsebuje tri ključne sistemske direktorije (wp-admin, wp-content, wp-includes) ter vrsto
datotek, ki skrbijo za delovanje sistema za upravljanje vsebin. Med pomembnejšimi
izstopajo datoteke index.php, wp-config.php in .htaccess. Te datoteke in direktoriji
skupaj tvorijo jedro sistema in omogočajo vse od vzpostavitve povezave z bazo podatkov
do nalaganja skrbniškega vmesnika in prikaza spletnih strani končnim uporabnikom [12,
13].

5.1. Ključni direktoriji in datoteke

Primer 5.1.1 (Datotečna struktura WordPress projekta.)

wp-admin
themes

...
plugins

...
uploads

...
index.php

wp-content
...

wp-includes
...

.htaccess
index.php
license.txt
local-xdebugInfo.php
readme.html
wp-activate.php
wp-blog-header.php
wp-comments-post.php
wp-config.php
wp-config-sample.php
wp-cron.php
wp-links-opml.php
wp-load.php
wp-login.php
wp-mail.php
wp-settings.php
wp-signup.php
wp-trackback.php
xmlrpc.php

Vsak izmed navedenih direktorijev in datotek ima svojo specifično vlogo ter prispeva k
delovanju WordPressa:

• Direktorij wp-admin je osrednji direktorij za skrbniško upravljanje spletnega mesta
WordPress. V njem so poddirektoriji (npr. css, js, network, user) in pomembne
datoteke, kot so admin.php, plugins.php in themes.php. Te datoteke omogočajo
nalaganje vmesnika za urejanje vsebin, upravljanje uporabnikov, nastavitev tem

32

Poglavje 5. Datotečna struktura v sistemu WordPress

in vtičnikov. Direktoriji se neposredno povezuje z delovanjem nadzorne plošče in
omogoča dostop do vseh skrbniških funkcionalnosti sistema.

• Direktorij wp-includes vsebuje temeljno izvorno kodo sistema WordPress,
knjižnice in funkcionalnosti, ki jih uporabljajo drugi deli sistema. Zaradi
občutljivosti kode je odsvetovano kakršnokoli ročno spreminjanje vsebine tega
direktorija. Izjema je lahko datoteka functions.php, vendar tudi pri tej velja,
da spremembe raje izvajamo v aktivni temi (več o tem v poglavju 6.5).

• Direktorij wp-content vključuje vse podatke, ki jih je možno neposredno upravljati,
tj. teme, vtičnike in naložene vsebine. Vsaka tema ali vtičnik ima svoj direktorij
znotraj direktorija themes oziroma plugins, ki vsebuje vse potrebne datoteke
za delovanje posamezne teme oziroma vtičnika. Pomemben direktorij znotraj
direktorija wp-content je tudi uploads, kjer se hranijo slike, dokumenti in druge
medijske datoteke, strukturirane po letih in mesecih njihovega nalaganja na spletno
mesto. Redkeje se zgodi, da so določeni vtičniki (npr. požarni zidovi) nameščeni
izven direktorija wp-content, saj se morajo naložiti pred drugo vsebino.

• Datoteka wp-config.php vsebuje ključne podatke za povezavo z bazo podatkov,
varnostne ključe in nastavitve, ki vplivajo na delovanje spletnega mesta (npr.
vključitev diagnostike, predpona preglednic ipd.). Zaradi občutljivih informacij
je pogosto tarča napadalcev, zato jo je treba ustrezno zaščititi. Čeprav jo lahko
ročno uredimo, je priporočljivo uporabljati vtičnike za večino sprememb.

• Datoteka .htaccess omogoča nadzor nad strukturo povezav (npr. preusmeritve,
trajne povezave, blokade naslovov IP). Deluje zgolj na strežnikih Apache in
je privzeto skrita, zato jo je treba v odjemalcu FTP/SFTP posebej prikazati.
Uporablja se tudi za napredne varnostne ukrepe, kot je zaščita z geslom, vendar
je tudi večino teh funkcionalnosti priporočljivo implementirati z vtičniki.

• Datoteka index.php je ena najpomembnejših sistemskih datotek v WordPressu,
saj skrbi za prikaz spletnega mesta ob obisku končnega uporabnika. Gre za
začetno točko nalaganja, ki sproži vključevanje ustreznih jedrnih datotek in
inicializacijo sistema. Ko uporabnik pošlje zahtevo za določeno stran, se datoteka
index.php aktivira in prevzame vlogo usmerjevalnika, ki določi, katere vsebine in
funkcionalnosti bodo prikazane. Pomen te datoteke je še posebej razviden, ko ta v

33

5.2. Shema podatkovne zbirke

korenskem direktoriju ni prisotna. V takem primeru se ob obisku spletnega mesta
uporabniku v brskalniku prikaže celotna vsebina direktorija, kar predstavlja resno
varnostno pomanjkljivost in seveda slabo uporabniško izkušnjo. Iz tega razloga je
datoteka index.php prisotna ne le v korenskem direktoriju, temveč tudi v številnih
poddirektorijih, kot je na primer wp-content, kjer preprečuje razkritje internih
struktur spletnega mesta. V mnogih poddirektorijih ta datoteka ne vsebuje nobene
dejanske programske logike, temveč je prazna z izjemo kratkega komentarja, kot
je »Silence is golden.«. Takšne prazne datoteke index.php služijo kot zaščitni
mehanizem za prikrivanje vsebine direktorija pred javnim dostopom, brez potrebe
po kompleksnejših varnostnih pristopih.

� Izmed treh sistemskih direktorijev so posegi v direktorij wp-admin in direktorij
wp-includes močno odsvetovani. Spreminjanje jedrnih datotek ni dobra praksa, saj
morebitne posodobitve sistema WordPress prepišejo vse spremembe. Kljub temu je
možno prilagoditi delovanje sistema WordPress, in sicer v direktoriju wp-content, kar
bomo spoznali v poglavjih 6–8.

Struktura datotek in direktorijev v WordPressu je zasnovana tako, da ločuje jedro
sistema od uporabniških nastavitev in vsebine. Za zagotavljanje stabilnosti in varnosti je
priporočljivo, da se spremembe izvajajo izključno prek tem in vtičnikov ter da se jedrne
datoteke, z izjemo direktorija wp-content, nikoli neposredno ne spreminjajo. Vsak poseg
v nastavitvene datoteke naj bo premišljen, spremljan z varnostno kopijo in izveden le, če
ni na voljo ustrezne alternativne rešitve v obliki vtičnika [12].

5.2 Shema podatkovne zbirke

Podatkovna zbirka je sestavni del vsake WordPress spletne strani. Skupaj z datotekami
sestavlja temeljno infrastrukturo sistema. Medtem ko datoteke definirajo logiko, obliko in
delovanje spletnega mesta, relacijska podatkovna baza shranjuje vsebino, ki jo ustvarijo
uporabniki. To vključuje prispevke, strani, komentarje, uporabniške račune, nastavitve
in drugo. WordPress za to uporablja sistem za upravljanje relacijskih podatkovnih baz
MySQL, ki shranjuje podatke v strukturiranih preglednicah. Za obdelavo teh podatkov
se uporabljajo ukazi poizvedovalnega jezika SQL. Ob prvi namestitvi WordPressa je

34

Poglavje 5. Datotečna struktura v sistemu WordPress

zato treba ustvariti novega uporabnika in podatkovno zbirko, kar omogoča vzpostavitev
povezave med spletnim mestom in zbirko podatkov. Vsaka WordPress stran je povezana
z eno samo podatkovno zbirko, ki vsebuje več povezanih preglednic [13, 14]. Osnovne
(jedrne) preglednice, ki jih WordPress ustvari ob namestitvi, vključujejo [14]:

• wp_options – splošne nastavitve strani,

• wp_users – uporabniški računi,

• wp_usermeta – dodatni podatki o uporabnikih,

• wp_posts – prispevki in strani,

• wp_postmeta – dodatni podatki o prispevkih,

• wp_terms, wp_term_taxonomy, wp_term_relationships – kategorizacija vsebin s
taksonomijami (kategorije, oznake),

• wp_comments – komentarji,

• wp_commentmeta – dodatni podatki o komentarjih,

• wp_links – podatki o zunanjih povezavah (v starejših namestitvah).

Osnovna shema podatkovne zbirke je prikazana na entitetno-relacijskem diagramu na
sliki 5.1. Sčasoma se zbirka podatkov razširi, saj lahko vsak nameščen vtičnik doda nove
preglednice in vnose. Na primer, spletne trgovine, ki uporabljajo vtičnik WooCommerce,
razdelijo podatke o naročilih, kupcih in izdelkih med več preglednic. Pomembno je
razumeti, da preglednice pogosto delujejo v soodvisnosti – podatki se povezujejo z
relacijami med preglednicami. Na primer: za izpis komentarjev WordPress uporablja
tako preglednico wp_comments kot wp_commentmeta [13, 14].

5.3 Hierarhija predlog klasičnih tem

Videz spletnega mesta v WordPressu temelji na uporabi tem, pri čemer razlikujemo med
klasičnimi temami in blokovnimi temami. Klasične teme se zanašajo na t. i. poizvedbeni
niz (angl. Query String), ki določa, katera predloga oziroma kombinacija predlog v
hierarhiji datotek PHP bo uporabljena za prikaz določene vsebine. Poizvedbeni niz je

35

5.3. Hierarhija predlog klasičnih tem

Slika 5.1. Entitetno-relacijski diagram podatkovne zbirke osnovne WordPress
strani [14].

informacija, vključena v povezavo URL posamezne podstrani, in predstavlja osnovo za
prepoznavanje tipa vsebine, ki jo uporabnik zahteva (npr. kategorija, iskanje, prispevek,
stran). Osrednji mehanizem, ki upravlja prikaz vsebine v WordPressu, je hierarhija
predlog (angl. Template Hierarchy). Sistem deluje tako, da WordPress na osnovi
vrste poizvedbe določi, katera predloga naj se uporabi, in nato išče ustrezne datoteke
v direktoriju aktivne teme, dokler ne najde prve ustrezne predloge. Če ustrezne predloge

36

Poglavje 5. Datotečna struktura v sistemu WordPress

ni mogoče najti, se uporabi osnovna predloga datoteka!index.php, ki mora biti prisotna
v vsaki temi [15]. Diagram na sliki 5.2 prikazuje, katere predloge se uporabijo za prikaz
WordPress strani glede na pravila hierarhije predlog [15].
Primer opisuje uporabo zaporedja predlog, ki so vključene pri prikazu posamezne strani.
Če je stran WordPress nameščena na naslovu http://primer.si/blog/ in obiskovalec
klikne povezavo do določene kategorije, npr. http://primer.com/blog/kategorija

/glavne-jedi/, WordPress začne iskati ustrezno predlogo v aktivni temi. Najprej se
preveri, ali obstaja datoteka, ki se ujema s kratkim imenom kategorije (angl. Slug), torej
v tem primeru category-glavne-jedi.php ali category-sladice.php, če je takšno ime
kategorije. Če predloge z imenom kategorije ni, WordPress preveri, ali obstaja datoteka,
ki se ujema z ID-jem kategorije – npr. category-4.php, če je ID kategorije 4. Če tudi ta
ne obstaja, sistem nadaljuje iskanje splošne predloge za kategorije category.php. Če niti
ta datoteka ni na voljo, WordPress uporabi bolj generično predlogo za arhivirane vsebine
– archive.php. Če še vedno ni mogoče najti ustrezne predloge, WordPress na koncu
uporabi osnovno predlogo index.php, ki je obvezna v vsaki temi. Tak način iskanja
predlog omogoča visoko stopnjo prilagodljivosti pri oblikovanju posameznih tipov strani,
hkrati pa zagotavlja, da bo vsebina vedno prikazana, tudi če specifične predloge manjkajo.

5.3.1 Predloge domače strani

Enak pristop hierarhije se upošteva tudi pri izbiri predloge za prikaz najpomembnejše
strani – domače strani. Kot je prikazano na sliki 5.2, se v WordPressu za prikaz vstopne
strani najprej uporabi predloga front-page.php, ne glede na to, ali je za domačo stran
uporabljena nastavitev statične strani ali prikaza zadnjih prispevkov. Če ta datoteka ne
obstaja, WordPress glede na nastavitve v zavihku Nastavitve → Branje (prikazane na
sliki 5.3) uporabi datoteke predlog v naslednjem vrstnem redu [15]:

1. home.php – če je nastavljeno prikazovanje zadnjih prispevkov,

2. page.php – če je nastavljena statična začetna stran,

3. index.php – če prejšnje predloge ne obstajajo.

37

5.3. Hierarhija predlog klasičnih tem

Slika 5.2. Hierarhija predlog (datotek), uporabljenih za prikaz posamezne
strani.

38

Poglavje 5. Datotečna struktura v sistemu WordPress

Slika 5.3. Nastavitve domače strani.

5.3.2 Predloge prispevka

Podobno kot v predhodnih primerih se za prikaz posameznega prispevka uporablja
datoteka predloge za posamezen prispevek (angl. Single Post Template), pri čemer
sledi hierarhični poti od najbolj specifične do najbolj splošne predloge. Sistem predloge
upošteva v naslednjem vrstnem redu [15]:

1. single-post-type-slug.php – najprej se preveri, ali obstaja predloga prikaza za
točno določen prispevek. Na primer, če gre za prispevek tipa izdelek s kratkim
imenom cokoladni-piskoti-12, bo iskana predloga single-recept-cokoladni-

piskoti-12.php.

2. single-post-type.php – če predloga single-cokoladni-piskoti-12.php ne
obstaja (kar je pogost scenarij, saj razvijalci običajno ne določajo ločenega oziroma
individualnega izgleda strani individualnih prispevkov), WordPress išče predlogo za
določen tip prispevka, npr. single-recept.php. Ta predloga se pogosto uporablja,
tudi kadar so dodani lastni tipi prispevkov. Za dodan lasten tip prispevka recept,
bi na primer dodali predlogo single-recept.php.

3. single.php – če tudi zgornja predloga ni na voljo, WordPress nato preide na splošno
predlogo za posamezen prispevek, ne glede na njen tip.

4. singular.php – če tudi predloga single.php ni na voljo, preveri še nekoliko
bolj generično predlogo singular.php, ki se uporablja za vse posamezne vsebine

39

5.4. Hierarhija predlog blokovnih tem

(prispevki, strani ipd.).

5. index.php – če nobena od zgornjih predlog ni prisotna, sistem na koncu uporabi
osnovno predlogo index.php. Uporaba te predloge je sicer zadnja rešitev in vsebino
prikazuje v precej omejenem obsegu (npr. ne prikazuje vseh metapodatkov recepta
Čokoladni piškoti, kot so na primer zahtevnost, sestavine, čas peke).

� Opisana hierarhična logika iskanja predlog ne velja le za opisane primere prikaza
posameznega prispevka in domače strani, temveč je na enak način uporabljena tudi
pri prikazu vseh drugih vrst vsebin v WordPressu, od arhivov kategorij in oznak do
posameznih prispevkov z lastnimi tipi prispevkov ter iskalnih rezultatov ali strani z
napakami. Na sliki 5.2 je shematično prikazan celoten potek iskanja predlog glede na
vrsto poizvedbe, medtem ko so vsi primeri in posebnosti vrstnega reda uporabe predlog
podrobneje opisani v uradni dokumentaciji [15].

5.4 Hierarhija predlog blokovnih tem

V nasprotju s klasičnimi temami, kjer strukturo določajo datoteke PHP in predloge, so
blokovne teme zasnovane na sistemu blokov. Vsak element spletnega mesta je predstavljen
kot blok ali skupek blokov, kar omogoča izjemno prilagodljivost pri oblikovanju. Urejanje
in prilagajanje poteka neposredno v urejevalniku spletnega mesta, ki temelji na konceptu
urejanja celotnega spletnega mesta (angl. Full Site Editing ali FSE). Hierarhija blokovne
teme je organizirana po velikosti, od posameznih gradnikov, predlog in delov predlog do
celotne teme [16, 17]:

• Blok (angl. Block) – osnovni gradniki vsebine, kot so odstavek, slika, gumb ali
skupina.

• Vzorec bloka (angl. Block Pattern) – vnaprej oblikovana kombinacija blokov, ki jo
lahko znova uporabimo in prilagodimo.

• Deli predloge (angl. Template Parts) – ponovljiv del predloge, namenjen
strukturalnim elementom, npr. glavi, nogi ali stranski vrstici.

• Predloga (angl. Template) – določa celotno postavitev za določeno vrsto vsebine
(npr. stran, prispevek, arhiv).

40

Poglavje 5. Datotečna struktura v sistemu WordPress

• Tema (angl. Theme) – najvišja raven, ki vključuje vse prejšnje elemente in določa
celoten videz, slog in vedenje spletnega mesta.

Blokovni pristop je zasnovan na modularnem oblikovanju, katerega osnovna ideja je
oblikovanje spletnega mesta iz manjših blokov, ki so pripravljeni za ponovno uporabo.
Bloki delujejo kot gradniki, ki jih je mogoče kombinirati v vzorce ali ponovno uporabne
komponente, kot so odseki za predstavitev izdelkov, obrazci za prijavo ali komentarji
strank. Bloke je mogoče prilagajati z datoteko theme.json ali vizualno z orodjem
globalnih slogov. Ključna načela sestavljanja blokov vključujejo začetek z osnovnimi
elementi (kot so besedilo, slike, gumbi), postopno gradnjo kompleksnejših struktur in
odzivno oblikovanje, ki zagotavlja pravilno prikazovanje na vseh napravah. Cilj je
ustvarjanje prilagodljivega sistema, ne posamezne strani.
Datoteka theme.json ima ključno vlogo pri upravljanju nastavitev in slogov blokovne
teme. Omogoča nadzor nad barvami, tipografijo, razmiki, videzom posameznih blokov
ter registracijo predlog in delov predlog. V hierarhiji nastavitev imajo pri blokovnih
temah prednost uporabniške spremembe, sledijo podrejena tema, glavna tema in privzete
WordPress nastavitve [17, 18]. Primer datoteke theme.json in njenega prilagajanja je
podrobneje predstavljen v poglavju 6.2.

5.5 Dostop do datotečnega sistema WordPress in

podatkovne zbirke

Kadar spletno stran WordPress upravljamo v lokalnem razvojnem okolju, je dostop do
datotečnega sistema WordPress možen preprosto prek raziskovalca računalnika. Pogosto
pa je spletna stran WordPress nameščena na strežniku spletnega gostitelja, kar pomeni,
da so vse datoteke in podatkovna zbirka fizično shranjene na oddaljenem računalniku. Za
upravljanje, vzdrževanje ali odpravljanje napak na strani je pogosto potreben neposreden
dostop do teh virov. Obstaja več načinov, kako do njih dostopati, vsak s svojimi
prednostmi in slabostmi. Izbira metode je odvisna od tehničnega znanja, vrste gostovanja
in specifičnih potreb uporabnika.

41

5.5. Dostop do datotečnega sistema WordPress in podatkovne zbirke

5.5.1 Dostop prek nadzorne plošče WordPress

Do določenih datotek je možno privzeto dostopati s skrbniškim vmesnikom WordPress.
Slednje omogočata urejevalnik datotek tem (angl. Theme File Editor) in urejevalnik
datotek vtičnikov (angl. Plugin File Editor), ki ju je v primeru uporabe blokovnih tem
možno najti pod zavihkom Orodja (angl. Tools), kot prikazuje slika 5.4 in slika 5.5. V
primeru uporabe klasičnih tem sta pod zavihkom Videz (angl. Appearance) in Vtičniki
(angl. Plugins).

Slika 5.4. Urejevalnik datotek tem v nadzorni plošči WordPress.

� Neposredno urejanje teme ali vtičnika znotraj nadzorne plošče WordPressa ni
priporočljiva praksa. Neposredno urejanje lahko namreč okvari spletno mesto, kar
onemogoči dostop do nadzorne plošče ter s tem do urejevalnika teme ali vtičnika znotraj
nje.

Prek nadzorne plošče WordPress je prav tako možno dostopati do celotnega datotečnega
sistema in podatkovne baze, in sicer z uporabo vtičnikov za dostop do datotek WordPress
in podatkovne zbirke. Takšen način omogoča neposreden pregled in upravljanje
strežniških datotek kar znotraj nadzorne plošče WordPress, brez potrebe po dodatni
prijavi ali uporabi zunanjih orodij. Med najbolj priljubljenimi rešitvami je vtičnik
42

Poglavje 5. Datotečna struktura v sistemu WordPress

Slika 5.5. Urejevalnik datotek vtičnikov v nadzorni plošči WordPress.

WP File Manager, ki po namestitvi omogoča pregled celotne strukture WordPress
datotek v vizualnem vmesniku. Njegova uporaba je preprosta in dostopna tudi manj
tehnično podkovanim uporabnikom [13]. Podoben pristop je možen tudi pri delu z bazo
podatkov. Vtičniki, kot sta Database Admin in WP Adminer, omogočajo vpogled v
strukturo podatkovne zbirke brez ročne prijave v orodja, kot je phpMyAdmin. Čeprav
so ti vtičniki funkcionalno nekoliko omejeni in imajo osnovnejši vmesnik, predstavljajo
uporabno rešitev za osnovne posege, kot so vpogledi v preglednice ali hitra diagnostika.
Glavna prednost takšnega pristopa je preprostost uporabe in dostopnost neposredno iz
nadzorne plošče WordPress. Vendar je to hkrati tudi njegova ključna slabost – v primeru
resnejših napak in okvar na strani dostop do nadzorne plošče ni možen, kar pomeni, da
mora skrbnik uporabiti alternativen način dostopa do datotek (npr. z uporabo protokola
FTP/SFTP). Primer preprečenega dostopa do nadzorne plošče zaradi sintaktične napake
v datoteki functions.php je prikazan na sliki 5.6. Kljub temu so vtičniki za upravljanje
datotek in podatkovne zbirke ob precejšnji meri pazljivosti učinkovita rešitev za majhna
opravila, zlasti pri upravljanju strani brez dostopa do strežniških orodij [13].

43

5.5. Dostop do datotečnega sistema WordPress in podatkovne zbirke

Slika 5.6. Onemogočen dostop do nadzorne plošče (in vtičnika za urejanje)
zaradi sintaktične napake.

5.5.2 Dostop prek nadzorne plošče cPanel

Najpogosteje uporabljeno orodje za dostop do datotek WordPress in baze podatkov je z
uporabo cPanel [19] – nadzorne plošče, ki jo ponuja večina ponudnikov gostovanja. V
cPanelu sta za ta namen ključni orodji (Online) File Manager za upravljanje datotek in
phpMyAdmin za delo z bazo podatkov. Dostop do cPanela je odvisen od ponudnika
gostovanja – najpogosteje je možen dostop do cPanela prek naslova URL v obliki
ime-domene.si/cpanel, kjer se prijavimo z ločenimi cPanel dostopnimi podatki (ne z
WordPress dostopnimi podatki). Znotraj cPanela (kot prikazano na sliki 5.7) lahko z
(Online) File Managerjem pregledujemo datoteke WordPress strani, kot bi jih v lokalnem
raziskovalcu. Datoteke lahko prenesemo, lokalno uredimo in nato ponovno naložimo na
strežnik [13].
Za neposredno delo s podatkovno bazo se pogosto uporabi orodje phpMyAdmin, ki
omogoča pregled in urejanje preglednic podatkovne zbirke. Če gostitelj ne omogoča
samodejne prijave, so podatki za prijavo v datoteki wp-config.php. Pogled podatkovne
baze v phpMyAdmin je prikazan na sliki 5.8.
Nekateri ponudniki gostovanja uporabljajo alternativo cPanelu, kot sta Plesk in Webmin,
ali pa imajo lasten uporabniški vmesnik z gumbom za dostop do podatkovne zbirke. V
takšnih primerih se za delo s podatkovno bazo lahko uporablja orodje Adminer, ki opravlja
44

Poglavje 5. Datotečna struktura v sistemu WordPress

Slika 5.7. Prikaz datotečne strukture WordPress projekta – cPanel.

Slika 5.8. Prikaz sheme podatkovne baze WordPress projekta – phpMyAdmin.

podobno funkcijo kot phpMyAdmin [13].

45

5.5. Dostop do datotečnega sistema WordPress in podatkovne zbirke

5.5.3 Dostop prek protokola FTP/SFTP

Protokol FTP (angl. File Transfer Protocol) je eden starejših in najpogosteje uporabljenih
protokolov za prenos datotek med strežniki in odjemalci. V nasprotju s protokolom
HTTP, ki se uporablja za prikaz spletnih vsebin, je protokol FTP namenjen neposrednemu
prenosu datotek, pri čemer zahteva avtentikacijo z uporabniškim imenom in geslom.
Zaradi varnostnih razlogov se danes pogosteje uporablja varna različica, t. i. protokol
SFTP (angl. SSH File Transfer Protocol), ki omogoča šifrirano komunikacijo med
odjemalcem in strežnikom [20]. Za uporabo protokola FTP ali protokola SFTP je treba
uporabljati poseben program (t. i. odjemalec FTP/SFTP). FileZilla [21] je eden izmed
popularnih odprtokodnih odjemalcev, ki omogoča preprost, hiter in zanesljiv dostop do
strežnikov. Program je na voljo za večino operacijskih sistemov (Windows, macOS,
Linux) in ponuja grafični uporabniški vmesnik, ki je primerljiv z raziskovalcem datotek
v operacijskem sistemu. Postopek vzpostavitve povezave z uporabo orodja FileZilla je
prikazan na sliki 5.9.

Slika 5.9. Dostop do datotečne strukture WordPress projekta na strežniku z
orodjem FileZilla.

46

Poglavje 5. Datotečna struktura v sistemu WordPress

5.5.4 Dostop z ukazno vrstico in protokolom SSH

Protokol SSH (angl. Secure Shell) je napreden varnostni protokol, ki omogoča
varen in neposreden dostop do oddaljenih strežnikov z ukazno vrstico. V okolju
WordPress se uporablja predvsem za skrbniške naloge, kot so nadzor strežniških datotek,
nameščanje posodobitev, brisanje vtičnikov in izvajanje diagnostičnih postopkov [22].
Za razliko od grafičnih vmesnikov, kot sta cPanel in FileZilla, dostop prek protokola
SSH ne ponuja vizualnega pregleda nad datotekami, temveč zahteva osnovno znanje
uporabe ukazne vrstice. Tak pristop poveča zahtevnost uporabe, a omogoča tudi
bistveno večjo prilagodljivost in zmogljivost. Ena izmed ključnih prednosti protokola
SSH v okolju WordPress je možnost uporabe orodja WP-CLI (angl. WordPress
Command Line Interface) [23], ki omogoča izvajanje številnih za WordPress specifičnih
ukazov brez potrebe po grafičnem vmesniku. Z njim lahko upravljamo uporabnike,
urejamo nastavitve, posodabljamo vtičnike in teme ter izvajamo postopke varnostnega
kopiranja ali diagnostike. Takšen pristop je posebej uporaben v okoljih, kjer je
učinkovitost pomembnejša od preprostosti uporabe ali kjer spletno gostovanje ne vključuje
naprednejših grafičnih orodij. Protokol SSH z uporabo ukazne vrstice tako predstavlja
primerno orodje za razvijalce in sistemske skrbnike, ki želijo popoln nadzor nad okoljem
WordPress [13].

47

POGLAVJE 6

Teme in vizualno urejanje

V predhodnih poglavjih so bile teme že večkrat omenjene kot mehanizem, s katerim
v WordPressu upravljamo z vizualnim izgledom spletnega mesta. V tem poglavju
bomo podrobneje predstavili dva glavna tipa tem, in sicer klasične in blokovne
teme. Osredotočili se bomo na predstavitev, kako in med kakšnimi temami lahko
izbiramo, predstavitev lastnosti posameznih tipov tem in načinov urejanja videza z njimi.
Predstavili bomo tudi vtičnike za vizualno izdelavo strani in koncept podtem.

Kaj je tema? Tema v WordPressu je zbirka datotek, ki določa videz, postavitev
in včasih tudi delovanje spletne strani. Danes poznamo predvsem dve vrsti
tem, in sicer klasične teme in blokovne teme. Teme vsebujejo številne datoteke,
kot so PHP/HTML, JavaScript, CSS, slike in dokumentacija. Uporabimo lahko
brezplačne ali plačljive obstoječe teme. Teme lahko razvijemo tudi sami. Videz
spletne strani, ki ga določa izbrana klasična ali blokovna tema, lahko dodatno
prilagajamo na več načinov – z uporabo vgrajenega urejevalnika Gutenberg,
vtičnikov za vizualno oblikovanje strani (angl. Page Builders) in z razvojem lastne
podteme.

� Pogosto prihaja do prepletanja med funkcionalnostmi tem in vtičnikov, zato velja dobra
praksa: tema naj skrbi za videz in predstavitev vsebine, vtičniki pa za nadzorovanje
vedenja in funkcionalnosti spletne strani. Tema naj ne vsebuje ključnih funkcionalnosti
– če temo zamenjamo, jih namreč v tem primeru izgubimo.

6.1. Izbira teme

6.1 Izbira teme

Brezplačne teme najdemo v uradnem katalogu WordPressa, ki je na voljo na povezavi
https://wordpress.org/themes/ ali znotraj skrbniškega vmesnika v zavihku Videz →
Teme. Uporaba brezplačnih tem neposredno iz uradnega kataloga WordPress predstavlja
preprost in dostopen način za določitev izgleda spletne strani. Njihova glavna prednost je,
da so brezplačne in na voljo v velikem številu, kar omogoča hitro izbiro vizualne podobe
brez dodatnih stroškov. Kljub temu imajo brezplačne teme tudi pomanjkljivosti – ni
zagotovila, da bodo dolgoročno vzdrževane ali imele redne posodobitve, kar lahko vpliva
na varnost in združljivost z novejšimi različicami WordPressa. Velikost tem se močno
razlikuje, kar lahko vpliva na hitrost nalaganja strani. Poleg tega lahko ob večjih posegih
ali prilagoditvah pride do konfliktov z drugimi vtičniki ali gradniki.
Uporabimo lahko tudi plačljive teme, ki jih najdemo na spletnih tržnicah. Nakup plačljive
teme prek platform, kot sta Theme Forest (posamični nakupi, običajno 30–70 USD)
ali Envato Elements (mesečna oziroma letna naročnina), omogoča hiter in profesionalen
začetek pri postavitvi izgleda spletne strani. Plačljive teme pogosto vključujejo vnaprej
pripravljene predloge, sodoben in odziven izgled ter možnost uvoza vzorčnih vsebin,
kar olajša predstavo o končnem izgledu strani. Prednosti plačljivih tem so tudi
redno vzdrževanje, podpora in pogoste posodobitve, ki prispevajo k boljši varnosti in
združljivosti. Vendar so te teme pogosto obremenjene z dodatnimi funkcionalnostmi in
vsebinami, ki morda niso potrebne, kar lahko vpliva na zmogljivost in velikost strani.
Optimizacija je običajno zahtevnejša kot pri namensko razviti ali minimalistični temi.
Ob večjih prilagoditvah se lahko pojavijo konflikti z vtičniki za vizualno izdelavo strani
ali drugimi vtičniki, zato je predhodna združljivost ključna.
Na sliki 6.1 je prikazana zbirka WordPress s temami in seznam nameščenih tem, kjer so
nekatere klasične, vendar združljive z vtičniki za urejanje strani (npr. Astra), druge pa
temeljijo na blokovni arhitekturi (npr. Twenty Twenty-Five).
Povzetek primerjave različnih vrst WordPress tem je predstavljen v preglednici 6.1, in
sicer klasičnih tem, »lahkih« klasičnih tem kot posebne podvrste klasičnih tem, namenjene
vizualnemu urejanju z uporabo vtičnikov za vizualno izdelavo strani, in blokovnih tem.
Zraven značilnosti posamezne vrste teme so navedeni še vidnejši predstavniki.

50

https://wordpress.org/themes/

Poglavje 6. Teme in vizualno urejanje

Slika 6.1. Izbira teme – WordPress knjižnica tem.

Preglednica 6.1. Vrste WordPress tem in njihove značilnosti.
Značilnost Klasična tema »Lahka« klasična

tema
Blokovna tema

Opis Temelji na datotekah
predlog, kot so
index.php in
style.css

Temelji na datotekah
predlog, kot so
index.php in
style.css, a z
minimalno strukturo,
zasnovano za uporabo z
vtičniki za vizualno
izdelavo strani

Temelji na blokovni
arhitekturi in datoteki
theme.json; omogoča
celotno urejanje
spletnega mesta

Način
urejanja

Klasični urejevalnik,
vmesnik brez blokov

Uporaba vtičnikov za
vizualno izdelavo strani
(npr. Elementor,
WPBakery)

Vgrajen urejevalnik
Gutenberg

Primeri Twenty Seventeen,
Twenty Twenty-One

Hello Elementor, Astra
(v kombinaciji z
Elementorjem)

Twenty Twenty-Four,
Twenty Twenty-Five

51

6.2. Urejevalnik Gutenberg in blokovne teme

� Pred izbiro (ali nakupom) teme je priporočljivo preveriti, ali je tema združljiva z
izbranim vtičnikom za vizualno izdelavo strani, če načrtujemo njegovo uporabo.

6.2 Urejevalnik Gutenberg in blokovne teme

Gutenberg je privzeti in vgrajeni blokovni vizualni urejevalnik WordPressa (angl.
WordPress Block Editor). Predstavlja sodobno uredniško okolje, zasnovano na konceptu
blokov. Vsak del vsebine (naslovi, odstavki, slike, galerije, obrazci ipd.) je predstavljen
kot blok, kar omogoča modularno in intuitivno gradnjo spletnih strani. Pogled dodajanja
blokov na stran je prikazan na sliki 6.2. Bloke je mogoče enostavno vstavljati, premikati,
preurejati, podvajati ali pretvoriti v druge tipe blokov. Ta arhitektura spodbuja ponovno
uporabo vsebine (angl. Reusable Blocks) ter omogoča uporabo vnaprej pripravljenih
vzorcev (angl. Patterns), ki olajšajo sestavljanje vizualno usklajenih vsebin.

Slika 6.2. Struktura blokov, vidna pri urejanju strani.

Primer dodajanja preprostega bloka in upravljanja z njegovimi nastavitvami je prikazan
na sliki 6.3. Vsak blok ima določene nastavitve, ki so odvisne od izbranega bloka.
Poleg osnovnih funkcionalnosti urejevalnik podpira tudi gradnjo predlog in delov predlog,
s čimer je omogočeno oblikovanje celotne strukture spletnega mesta brez pisanja kode.
Gutenberg temelji na serializaciji podatkov z uporabo atributov, ki se zapisujejo v
52

Poglavje 6. Teme in vizualno urejanje

Slika 6.3. Primer dodajanja bloka »Slika« in upravljanja z njegovimi
nastavitvami.

komentarje HTML, kar omogoča tako statične kot dinamične bloke. Z variacijami
blokov je mogoče ponujati več vnaprej določenih nastavitev enega bloka, kar razvijalcem
olajša ustvarjanje kompleksnejših rešitev. Celoten sistem dopolnjuje možnost oblikovanja
in nastavitve slogov prek globalnih slogov (angl. Styles), ki se definirajo v datoteki
theme.json, kar dodatno krepi usklajenost in prilagodljivost tem. Gutenberg tako
poenostavlja urejanje vsebin, hkrati pa omogoča napredne zmožnosti za razvijalce in
urejevalce vsebin [24].
Primer datoteke theme.json, v kateri je mogoče urejati nastavitve teme, temelječe na
blokih, je prikazan na primeru 6.2.1. Osnovno ogrodje datoteke theme.json vključuje
ključne sklope: nastavitve (settings), sloge (styles), predloge (customTemplates), dele
predlog (templateParts) in vzorce (patterns). Vsak od teh delov ima svojo vlogo pri
definiranju vizualne identitete in strukture spletnega mesta. V tej datoteki je mogoče
določiti privzete nastavitve za vizualne sloge, kot so barvne palete, tipografija, razmiki in
možnosti orodij za urejanje. Struktura datoteke temelji na sintaksi JSON. V nastavitvah,
predstavljenih v primeru, so definirane tri osnovne barve s pripadajočimi identifikatorji
(npr. "slug": "base"), kar omogoča njihovo dosledno uporabo v celotni temi. Poleg
tega so možnosti, kot so defaultDuotone, defaultGradients in defaultPalette,
onemogočene, kar pomeni, da tema ne uporablja privzetih slogov WordPressa, temveč
lastne. Spreminjanje teh nastavitev omogoča večji nadzor nad oblikovanjem in zagotavlja
skladno uporabniško izkušnjo v okviru vizualne identitete spletnega mesta.

53

6.2. Urejevalnik Gutenberg in blokovne teme

Primer 6.2.1 (Primer datoteke theme.json.)

{

"$schema": "https://schemas.wp.org/wp/6.7/theme.json",

"version": 3,

"settings": {

"appearanceTools": true,

"color": {

"defaultDuotone": false,

"defaultGradients": false,

"defaultPalette": false,

"palette": [

{

"color": "#FFFFFF",

"name": "Base",

"slug": "base"

},

{

"color": "#111111",

"name": "Contrast",

"slug": "contrast"

},

{

"color": "#FFEE58",

"name": "Accent 1",

"slug": "accent-1"

},

...

]

}

},

"styles": {},

"customTemplates": {},

"templateParts": {},

"patterns": []

}

54

Poglavje 6. Teme in vizualno urejanje

Urejevalnik, prikazan na sliki 6.4, omogoča urejanje navigacije (menijev), stilov (globalnih
barv, tipografij, nastavitev posameznik blogov ipd.), strani, predlog (prispevka, arhiva
prispevkov, rezultatov iskanja, strani 404 ipd.), vzorcev in delov predlog (glava, noga
ipd.).

Slika 6.4. Urejevalnik Gutenberg.

Gutenberg je bil prvotno predstavljen v WordPressu različice 5.0 (december 2018)
in predstavlja pomemben premik k enostavnejšemu in vizualno usmerjenemu urejanju
vsebin. Z uvedbo celostnega urejanja strani v različici 5.9 (januar 2022), ki je uvedel sklop
funkcionalnosti, ki omogočajo uporabo blokov vizualnega urejevalnika Gutenberg za vse
dele spletne rešitve ter z razširitvijo blokovnih tem, vzorcev in imenika blokov, je postal
pomembno orodje za prilagajanje celotne spletne strani brez potrebe po kodi. Prihodnji
načrti Gutenberga vključujejo še dve vnaprej določeni fazi – izboljšanje sodelovanja med
avtorji in uvajanje večjezične podpore neposredno v jedro sistema [25].

6.3 Klasične teme

Klasične teme v WordPressu temeljijo na tradicionalni strukturi predlog in uporabljajo
klasični urejevalnik vsebin. Namesto gradnje strani z bloki se pri teh temah postavitev
določa s pomočjo datotek predlog (npr. header.php, index.php, footer.php) in
ročnega vnašanja vsebine. Uporabniki lahko strani urejajo znotraj klasičnega besedilnega
vmesnika, ki omogoča osnovno oblikovanje, brez možnosti vizualnega urejanja postavitve
posameznih elementov. Zaradi svoje stabilnosti in predvidljive strukture ostajajo

55

6.4. Vtičniki za vizualno izdelavo strani

primerna izbira za tehnično podkovane uporabnike ali za projekte, kjer ni potrebe po
naprednem vizualnem urejanju. Dostop do urejanja nastavitev klasične teme je prikazan
na sliki 6.5. Nastavitve klasičnih tem, ki so na voljo, so odvisne od izbrane teme. Kljub
temu so v splošnem nastavitve klasičnih tem v primerjavi z nastavitvami blokovnih tem
veliko bolj omejene, imajo pa razvijalci veliko bolj odprte roke pri prilagoditvah izvornih
datotek.

Slika 6.5. Prilagoditve klasične teme.

Poseben primer klasičnih tem so t. i. »lahke« klasične teme, ki so minimalistične in
namenjene vizualnemu urejanju spletnega mesta z uporabo vtičnikov za vizualno izdelavo
strani (angl. Page Builders), kot sta Elementor in WP Bakery.

6.4 Vtičniki za vizualno izdelavo strani

Vtičniki za vizualno izdelavo strani so namenski vtičniki za WordPress, ki omogočajo
vizualno oblikovanje spletnih strani brez neposrednega pisanja kode. Uporabniku
ponujajo grafični vmesnik za urejanje postavitve spletnih elementov po principu
56

Poglavje 6. Teme in vizualno urejanje

povleci-in-spusti, kar bistveno poenostavi proces oblikovanja vsebin. Na prvi pogled
takšni vtičniki zelo spominjajo na privzeti urejevalnik Gutenberg, kar ni nenavadno –
popularnost in razširjenost vtičnikov za vizualno izdelavo strani je predstavljal povod
za nastanek urejevalnika Gutenberg, pri čemer vtičniki za vizualno izdelavo strani
predstavljajo navdih za (nadaljnji) razvoj Gutenberga.
Vtičniki za vizualno izdelavo strani omogočajo vstavljanje in prilagajanje različnih
gradnikov (npr. besedil, slik, gumbov, obrazcev, postavitev v mreži) ter hkrati
zagotavljajo predogled sprememb v realnem času. Zaradi tega so posebej primerni
tako za uporabnike brez programerskega predznanja kakor za hitrejše prototipiranje v
profesionalnih okoljih. Med najbolj uveljavljenimi predstavniki so na podlagi podatkov o
številu aktivnih namestitev iz uradnega kataloga WordPress vtičnikov [26] (povzeto julija
2025) naslednji: Elementor (več kot 10.000.000 aktivnih namestitev), Beaver Builder (več
kot 100.000 aktivnih namestitev), Brizy (več kot 80.000 aktivnih namestitev) in Visual
Composer (več kot 50.000 aktivnih namestitev). Po podatkih W3Tech je Elementor tako
popularen, da ga uporablja kar 12,6 % vseh spletnih strani [27].
Čeprav vtičniki za vizualno izdelavo strani ponujajo visoko stopnjo prilagodljivosti in
prijaznost do uporabnika, lahko v določenih primerih vplivajo na zmogljivost spletne
strani ali otežijo poznejše nadgrajevanje, zato je njihova uporaba priporočljiva predvsem
tam, kjer sta hitrost izdelave in vizualna prilagodljivost prioriteta.

6.4.1 Elementor

V tem poglavju bo predstavljeno urejanje spletnih strani z uporabo vtičnika Elementor, ki
je eden od najpogosteje uporabljenih vizualnih urejevalnikov za WordPress. Na začetku
je treba Elementor namestiti, kar je mogoče narediti v zavihku Vtičniki → Dodaj nov
vtičnik, kot je prikazano na sliki 6.6. Vtičnik je po namestitvi treba še aktivirati, kot je
prikazano na sliki 6.7.
Z Elementorjem je mogoče urejati izgled in strukturo strani ter prispevkov. V urejevalnik
Elementor po dodajanju nove strani v WordPressu vstopimo tako, da na obstoječi strani
kliknemo gumb

�� ��Edit with Elementor , kot je to prikazano na sliki 6.8.

� Stran je priporočljivo predhodno poimenovati in shraniti, sicer jo vtičnik avtomatično
poimenuje z identifikatorjem (npr. Elementor #456 namesto želenega imena).

57

6.4. Vtičniki za vizualno izdelavo strani

Slika 6.6. Nalaganje vtičnika Elementor.

Slika 6.7. Omogočanje vtičnika Elementor.

Na sliki 6.9 je prikazana delovna površina urejevalnika Elementor med oblikovanjem
spletne strani. V zgornjem delu zaslona je orodna vrstica, ki omogoča dostop do osnovnih
funkcionalnosti, kot so shranjevanje, objava, predogled in preklapljanje med pogledi za
različne naprave (namizje, tablica, mobilni telefon). Leva orodna vrstica prikazuje zavihek
z gradniki (angl. Widgets), ki jih lahko uporabnik z metodo povleci-in-spusti vstavi
v strukturo strani. Gradniki vključujejo temeljne vsebinske elemente, kot so naslovi,
slike, videoposnetki, gumbi in delilniki. Za lažjo organizacijo elementov sta na voljo

58

Poglavje 6. Teme in vizualno urejanje

Slika 6.8. Urejanje strani z Elementorjem – izbira.

gradnika vsebnik in mreža. Zgornji gumb
�� ��+ oz.

�� ��Add Element odpira opisan izbor
vsebinskih komponent. Drugi primer (desno od prvotno opisanega primera) iste leve
orodne vrstice prikazuje aktiviran zavihek

�� ��Site Settings , ki omogoča dostop do globalnih
nastavitev spletnega mesta. Med njimi so na voljo parametri za določanje globalnih barv,
pisav, slogov tipografije, oblikovanje gumbov in druge ključne oblikovne komponente.
Spremembe, izvedene znotraj teh nastavitev, se nato odražajo na vseh straneh (znotraj
iste teme), kar omogoča čim bolj enoten uporabniški vmesnik.

Slika 6.9. Urejanje globalnih nastavitev Elementorja.

59

6.4. Vtičniki za vizualno izdelavo strani

Slika 6.10. Hierarhija gradnikov v Elementorju.

Zaradi velikega števila elementov, ki jih je mogoče uvrstiti na spletno stran, Elementor
omogoča tudi strukturni pregled hierarhije in organizacije vseh uporabljenih gradnikov.
Ta je prikazan na sliki 6.10.
Postopek oblikovanja strukture spletne strani v urejevalniku Elementor poteka zaporedno,
kot je prikazano na sliki 6.11. Najprej je priporočljivo dodati novo vsebinsko območje
s klikom na gumb za vstavljanje elementa. Vmesnik nato zahteva določitev osnovne
postavitve, pri čemer lahko uporabnik izbira med prilagodljivim vsebnikom ali standardno
mrežno razporeditvijo. Sledi izbira strukture znotraj izbrane postavitve, pri čemer so na
voljo različne razporeditve stolpcev. Ko je struktura določena, se posameznim stolpcem
dodelijo vsebinski gradniki, ki jih uporabnik preprosto povleče iz levega stranskega menija
na želeno mesto. Takšen modularni pristop omogoča hitro, pregledno in natančno
oblikovanje. Uporabnik ga sicer lahko preskoči in gradnike s seznama vstavlja neposredno
v prazno okolje. V tem primeru se uporabi privzeta postavitev, kjer je celotna vsebina
predstavljena v enem stolpcu.
Po določitvi osnovne strukture je mogoče nadalje urejati ključne parametre postavitve
posameznega vsebinskega območja znotraj strani. Uporabnik lahko v zavihku

�� ��Layout

natančno prilagodi širino (npr. širina vsebine, širina vsebnika), minimalno višino,
poravnavo in razporeditev elementov znotraj sekcije, kot je prikazano na sliki 6.12. Poleg
tega je mogoče nastaviti smer postavitve (vodoravno ali navpično), razmike med elementi
(angl. Gaps), obnašanje pri prelomih vrstic (angl. Wrap) ter določiti način poravnave po
60

Poglavje 6. Teme in vizualno urejanje

Slika 6.11. Osnovna organizacija strukture strani v Elementorju.

glavni in prečni osi (angl. Justify, Align).
Takoj ko so posamezni elementi dodani v vsebinske bloke, je mogoče urejati lastnosti
vsakega posameznega gradnika, kot je prikazano na sliki 6.13. Na sliki je izbran element
naslov, kar omogoča dostop do njegovih nastavitev prek treh zavihkov:

�� ��Content ,
�� ��Style

in
�� ��Advanced . V zavihku

�� ��Content je mogoče določiti besedilno vsebino, hierarhični nivo
naslova (npr. H1, H2) ter po potrebi dodati povezavo. V zavihku

�� ��Style se nastavljajo
tipografske lastnosti, kot so barva besedila, velikost pisave, družina pisave, razmiki med
vrsticami in poravnava besedila. Zavihek

�� ��Advanced omogoča dodatne možnosti, kot so
zunanji in notranji robovi (angl. Margin, Padding), odzivne nastavitve in animacije.
Organizacija nastavitev je enaka za vse elemente, tudi če se posamezne postavke med
gradniki nekoliko razlikujejo.

6.4.2 Razširitve vtičnika Elementor

Opisane funkcionalnosti Elementorja so omejene na brezplačno različico. Med drugim
je vtičnik mogoče razširiti z naročnino Elementor Pro [28], ki omogoča celovito vizualno
oblikovanje spletnih mest brez potrebe po programiranju. V osnovnem paketu uporabniku
ponujajo dostop do 50 dodatnih gradnikov, neposrednega urejevalnika tem za prilagajanje
glavnih delov spletne strani, kot so glava, noga, arhivske strani in posamezne predloge,
ter osnovna marketinška orodja, kot je gradnik za obrazce. Dodatni paket Advanced Solo
uporabnikom ponuja 82 gradnikov, podporo za dinamične vsebine prek vtičnika ACF
in lastnega tipa prispevkov, vgrajeni gradnik pojavnih oken ter napredndintegracije za
trženje. Poleg tega omogoča popolno integracijo z vtičnikom WooCommerce za postavitev

61

6.4. Vtičniki za vizualno izdelavo strani

Slika 6.12. Osnovna organizacija strukture strani v Elementorju.

Slika 6.13. Urejanje posameznega gradnika v Elementorju.

spletnih trgovin ter povezave s plačilnimi sistemi, kot sta PayPal in Stripe. Kljub temu
je postavitev spletne strani popolnoma izvedljiva tudi brez plačljive različice vtičnika.
Funkcionalnosti Elementorja lahko alternativno razširimo z uporabo drugih vtičnikov, ki
ponujajo dodatne elemente in dodatne razširitve nastavitev elementov. Primeri takšnih
vtičnikov so prikazani na sliki 6.14. Vtičniki, ki razširjajo funkcionalnosti Elementorja
dopolnjujejo tudi sicer plačljive funkcionalnosti Elementorja, kot je na primer urejanje
glave in noge.

62

Poglavje 6. Teme in vizualno urejanje

Slika 6.14. Vtičniki, ki razširjajo funkcionalnosti Elementorja.

6.5 Podteme

Vzpostavitev podteme (podrejene teme) ali t. i. otroške teme (angl. Child Theme) je
priporočena praksa pri razvoju WordPress tem, saj omogoča varno prilagajanje videza,
strukture in funkcionalnosti spletnega mesta brez spreminjanja izvorne (nadrejene)
teme. Otroška tema podeduje vse značilnosti nadrejene teme, obenem pa razvijalcu
omogoča, da z lastnimi slogovnimi datotekami (style.css) in funkcijskimi datotekami
(functions.php) doda ali prilagodi določene funkcionalnosti. Ključna prednost tega
pristopa je v tem, da se s posodobitvijo nadrejene teme ohranijo vse spremembe, narejene
v podtemi, kar bistveno poveča vzdržljivost in nadgradljivost spletnega mesta. Vsaka
podtema je organizirana v svojem direktoriju in vsebuje vsaj osnovni datoteki za definicijo
sloga in funkcionalnosti – ti predstavljata minimalni nabor datotek za pravilno delovanje.
Tak pristop je zlasti uporaben pri dolgoročni nadgradnji in prilagajanju spletnih mest po
meri.

6.5.1 Ustvarjanje podteme s pomočjo vtičnika

Eden izmed pristopov ustvarjanja podteme vključuje uporabo namenskih vtičnikov,
kot sta na primer Child Theme Generator in Child Theme Configurator. Ti vtičniki
omogočajo enostavno generiranje podteme prek grafičnega uporabniškega vmesnika, brez

63

6.5. Podteme

potrebe po ročnem urejanju datotek. Z nekaj kliki se ustvari osnovna struktura podteme,
ki vključuje potrebne datoteke. Po uspešnem ustvarjanju podteme se lahko vtičnik s
spletne strani tudi odstrani, saj za nadaljnje delovanje podteme ni več potreben. Ta
pristop je še posebej primeren za uporabnike brez programerskega znanja.

6.5.2 Ročno ustvarjanje podteme

Naprednejši pristop k ustvarjanju podteme vključuje ročno ustvarjanje podteme v
datotečni strukturi. Prvi korak ustvarjanja otroške teme je lociranje direktorija
wp-content

/themes. Znotraj njega je treba ustvariti nov direktorij za podtemo. V direktoriju
nato ustvarimo datoteko style.css, kamor vpišemo osnovne metapodatke o podtemi,
kot so ime, avtor, predloga (Template) in različica. Minimalni delujoč primer takšne
datoteke je prikazan v primeru 6.5.1. Opisan pristop ponuja večji nadzor nad strukturo
in kodo ter je primeren za uporabnike, ki se želijo poglobiti v prilagajanje WordPress
tem. Najpomembnejša postavka v tem dokumentu je Template, ki določa, na podlagi
katere starševske teme je bila ustvarjena otroška tema.

� Priporočljivo je, da ime direktorija vsebuje poimenovanje direktorija starševske teme
z dodatkom -child (npr. twentytwentyone-child), kar poveča preglednost in sledi
ustaljenim praksam razvoja.

Primer 6.5.1 (Primer stilne predloge style.css podteme.)

/*

Theme Name: Twenty Twentyone Child Theme

Template: twentytwentyone

*/

V direktoriju podteme je treba ustvariti tudi datoteko functions.php, ki omogoča
vključevanje funkcionalnosti, običajno pa tudi uvoz slogovnih predlog starševske teme.
Treba je preveriti, ali starševska tema samodejno poskrbi za nalaganje svojih stilov. Če
to drži, dodatni koraki za uvoz slogov niso potrebni, saj WordPress poskrbi za dedovanje
slogov prek mehanizmov prednosti stilov. Če pa osnovna tema ne omogoča samodejnega

64

Poglavje 6. Teme in vizualno urejanje

uvoza slogov, mora podtema to storiti eksplicitno s funkcijo wp_enqueue_scripts z
uporabo ustreznega mehanizma enqueue. V tem primeru je treba dodati eno izmed
metod nalaganja, kar je odvisno od načina, kako osnovna tema vključuje lastne stile
(npr. prek get_template_directory_uri() ali get_stylesheet_directory_uri()).
Pravilna izbira metode zagotavlja, da se stilne predloge uvozijo v pravilnem zaporedju,
kar preprečuje morebitne konflikte med elementi nadrejene in podrejene teme. Primer
nalaganja slogov v otroški temi v datoteki functions.php je na voljo v primeru 6.5.2.

Primer 6.5.2 (Primer nalaganja slogov v otroški temi (functions.php).)

<?php

add_action('wp_enqueue_scripts', 'enqueue_parent_styles');

function enqueue_parent_styles(){

wp_enqueue_style('parent-style',

get_template_directory_uri().'/style.css');

}

?>

V pristopu, ki vključuje ročno ustvarjanje otroške teme, je mogoče v direktorij dodati
tudi posnetek zaslona (v formatu .PNG, velikosti 1200 × 900 pikslov). Slika mora biti
poimenovana screenshot.png, kot je prikazano na primeru 6.5.3. Ta slika se bo prikazala
v nadzorni plošči WordPressa, na seznamu tem. Ko je struktura otroške teme pravilno
vzpostavljena (vključno z datotekama style.css in functions.php), se v nadzorni
plošči WordPress v zavihku Izgled → Teme prikaže nova tema, ki jo lahko aktiviramo.
Pomembno je, da ob tem starševske teme ne izbrišemo, saj otroška tema funkcionalno
in vizualno temelji na njej. Če je vse pravilno nastavljeno, ob aktivaciji otroške teme ne
bo zaznati vidnih sprememb – kar pomeni, da je prevzem lastnosti iz starševske teme
uspešno izveden.

65

6.5. Podteme

Primer 6.5.3 (Datotečna struktura otroške teme.)
wp-content

themes
twentytwenty-child

functions.php
screenshot.png
style.css

twentytwenty
...

...

6.5.3 Ustvarjanje podteme z ukazno vrstico

WordPress omogoča tudi upravljanje celotnega sistema z ukazno vrstico. Orodje WP-CLI
(WordPress Command Line Interface) [29] je uradno orodje, namenjeno izvajanju
skrbniških opravil, kot so namestitev, posodobitve ter upravljanje tem in vtičnikov,
brez uporabe grafičnega vmesnika. S tem razvijalcem omogoča hitrejše delo, večjo
avtomatizacijo in učinkovitejše upravljanje okolja WordPress. Celoten nabor ukazov
za WP-CLI je objavljen v dokumentaciji orodja [29], v nadaljevanju je prikazan
primer uporabe orodja ukazne vrstice za ustvarjanje podteme, imenovane Astra Child
(Primer 6.5.4). Primer uporablja ukaz wp scaffold child-theme [30] in predpostavlja,
da je trenutno že naložena in aktivirana starševska tema Astra.

Primer 6.5.4 (Primer ustvarjanja otroške teme z WP-CLI.)

$ wp scaffold child-theme astra-child --parent_theme=astra

6.5.4 Prilagoditev predlog in dodajanje funkcionalnosti v podtemi

Podtema se uporablja za urejanje in spreminjanje funkcionalnosti in delovanja
spletnega mesta. Dodajanje, razširjanje in urejanje funkcionalnosti poteka z datoteko
functions.php, ki je del podteme. Po vedenju je primerljiva z WordPress vtičniki,
saj omogoča izvajanje kode PHP ob nalaganju strani, vključevanje dodatnih skript,
registracijo menijev, vnosnih mest za gradnike (angl. Widgets), dodajanje kratkih kod

66

Poglavje 6. Teme in vizualno urejanje

(angl. Shortcodes), novih lastnih taksonomij, novih lastnih tipov prispevkov in drugo.
Funkcionalno lahko torej z ustreznim programiranjem dosežemo enake učinke kot z
razvojem lastnega vtičnika. Kljub temu je treba upoštevati, da ob morebitni menjavi
teme vse funkcionalnosti in spremembe iz datoteke functions.php izgubimo. Zato je pri
izbiri razvoja ali uporabe vtičnika oziroma implementaciji sprememb v functions.php

treba upoštevati smernice razvoja. Te so povzete v preglednici 6.2.

Preglednica 6.2. Primerjava med WordPress vtičnikom in datoteko functions.php.
Vtičnik Datoteka functions.php

• Zahteva unikatno glavo (angl. Plugin
Header).

• Se nahaja kot poddirektorij v
wp-content/plugins.

• Se izvede ob nalaganju strani, če je
vtičnik aktiviran.

• Je dostopen za vse teme.
• Načeloma mora imeti en namen.

• Ne zahteva unikatne glave.
• Se nahaja kot poddirektorij teme v

wp-content/themes/ime-teme.
• Se izvede zgolj takrat, kadar je v

direktoriju izbrane teme.
• Je dostopen samo za temo, v kateri se

nahaja (če je tema spremenjena, dodanih
in razširjenih funkcionalnosti ne moremo
uporabljati).

• Ima številne bloke kode z različnimi
nameni.

Primer dodajanja lastnega tipa prispevka je eden izmed pogostejših posegov v
delovanje WordPressa. Prikaz takšnega primera za dodajanje lastnega tipa prispevka
z nazivom Recepti, je prikazan v primeru 6.5.5. Pri tem se uporabi v WordPressu
vnaprej registrirana funkcija register_post_type() [31]. Ta omogoča razvijalcem, da
registrirajo lastne tipe prispevkov, s čimer razširijo osnovno funkcionalnost sistema za
upravljanje vsebin. S pomočjo te funkcije lahko ustvarimo lastne tipe prispevkov (npr.
»dogodki«, »recepti« ali »projekti«), ki se obnašajo podobno kot privzeti prispevek,
vendar imajo lastne oznake, povezave URL, upravljalne vmesnike in možnosti prikaza.
Funkcija zahteva enoličen ključ vrste prispevka (do 20 znakov) ter nabor parametrov,
ki opredeljujejo, ali bo tip prispevka javen, na voljo v vmesniku WordPress REST API,
vključen v navigacijo, podprt s funkcijami, kot so urejevalnik, avtor ali komentarji, in
ali bo imel arhiv. Pomembno je, da se funkcija vedno kliče v okviru akcije init, da se
zagotovi pravilno nalaganje.

67

6.5. Podteme

Primer 6.5.5 (Primeri dodajanja lastnega tipa prispevka (functions.php).)

<?php

function dodaj_tip_prispevka_recept() {

register_post_type('recept',

array(

'labels' => array(

'name' => 'Recept',

'singular_name' => 'Recept'

),

'public' => true,

'has_archive' => true,

'rewrite' => array('slug' => 'Recept'),

'show_in_rest' => true,

'supports' => array('title', 'thumbnail', 'excerpt')

)

);

}

add_action('init', 'dodaj_tip_prispevka_recept');

?>

Ustrezna raba funkcije register_post_type() omogoča napredno organizacijo vsebin
in boljšo uporabniško izkušnjo za avtorje in urednike vsebin. Vključitev lastnega tipa
prispevka Recept v nadzorni plošči WordPress je prikazana na sliki 6.15.

Slika 6.15. Dodan lasten tip prispevka Recept.

68

Poglavje 6. Teme in vizualno urejanje

Na podoben način se odražajo tudi spremembe slogovne datoteke style.css.
Primer 6.5.6 prikazuje spremembo pisave, barve ozadja telesa in glave strani, naslova ter
velikosti pisave naslova H2. Odraz spremembe na dejanskem izgledu strani je prikazan
na sliki 6.16.

Primer 6.5.6 (Sprememba slogovne datoteke otroške teme (style.css).)

* {

font-family: "Cambria";

}

body {

background-color: white;

}

#site-header{

background-color: #FDF0E9;

}

#site-header a {

color: #EF6D58;

}

h2.entry-title {

font-size: 3rem;

}

a) Prvotni izgled teme (Hello Elementor). b) Spremenjen izgled teme.

Slika 6.16. Prikaz sprememb, implementiranih v primeru 6.5.6.

69

POGLAVJE 7

Vtičniki

V predhodnih poglavjih so bili vtičniki večkrat omenjeni kot mehanizem za razširjanje
funkcionalnosti spletnega mesta WordPress brez poseganja v jedro sistema. V tem
poglavju bo tej tematiki namenjena bolj celostna obravnava. Podrobneje bo predstavljena
vloga vtičnikov v arhitekturi WordPressa, najpogostejši načini njihove uporabe ter prikazi
primerov in virov, kjer jih je mogoče pridobiti. Ob tem bodo izpostavljeni tudi primeri
vtičnikov, ki so privzeto vključeni v WordPress, primeri pogostih vtičnikov, ter razlaga,
kako delujejo v ozadju. V nadaljevanju bodo obravnavani pomembni vidiki varnosti,
vzdrževanja in posodabljanja vtičnikov. Predstavljene bodo tudi osnove razvoja lastnega
vtičnika, kar je še posebej uporabno, kadar obstoječe rešitve ne zadostujejo specifičnim
potrebam. Poglavje tako predstavlja ključni korak k razumevanju in učinkoviti uporabi
enega najpomembnejših gradnikov WordPress ekosistema.

Kaj je vtičnik? Vtičniki omogočajo razširitev in dopolnitev osnovnih funk-
cionalnosti, ki jo WordPress privzeto vključuje. Jedro WordPressa je zasnovano
tako, da ostane čim bolj enostavno in optimizirano, kar zagotavlja večjo
prilagodljivost in zmanjšuje odvečno kodo. Z uporabo vtičnikov lahko razvijalci
dodajo specifične funkcionalnosti, s čimer prilagodijo svoje spletno mesto glede na
individualne potrebe projekta. Vtičnik zajema skupino datotek, organiziranih v
en direktorij, in vključuje datoteke PHP, JS in CSS, grafike, tekstovne datoteke
ipd.

WordPress vtičnike je mogoče najti na več načinov – najobsežnejši vir zanje je uradni
katalog WordPress vtičnikov, dostopen neposredno iz skrbniškega vmesnika prek zavihka
Vtičniki → Dodaj vtičnik, ki je prikazan na sliki 7.1. Do kataloga je mogoče dostopati tudi
izven nadzorne plošče WordPress, na naslednji povezavi https://WordPress.org/plugins/.
Poleg brezplačnih možnosti so na voljo tudi komercialni vtičniki na platformah, kot sta

https://WordPress.org/plugins/

7.1. Izbira vtičnikov

CodeCanyon ali Envato Elements, pa tudi pri manjših ponudnikih, ki ponujajo bolj
specializirane rešitve. Za napredne razvijalce pa obstaja možnost, da vtičnik razvijejo
sami in ga popolnoma prilagodijo specifičnim potrebam svojega spletnega mesta. Prav
tako je možno določene obstoječe vtičnike prilagoditi.

Slika 7.1. Dodajanje vtičnikov preko WordPress nadzorne plošče.

V začetni namestitvi WordPressa sta pogosto privzeto že nameščena dva vtičnika,
Aksimet in Hello Dolly. Akismet preverja komentarje, ki jih uporabniki lahko dodajo
na WordPress stran, in ugotavlja, ali gre za neželeno vsebino (angl. Spam). Vtičnik
Hello Dolly nima globljega tehničnega pomena, temveč simbolično predstavlja optimizem
in duh generacije, kot ga je ujel Louis Armstrong v znameniti pesmi Hello, Dolly. Gre za
prvi uradni WordPress vtičnik. Ko je aktiviran, se v zgornjem desnem kotu skrbniškega
vmesnika naključno prikazujejo verzi iz te pesmi [32]. Uporabniki lahko sicer oba (po
lastni presoji) tudi odstranijo.

7.1 Izbira vtičnikov

Uradni katalog vtičnikov WordPress je imel med pripravo tega gradiva več kot 59.000
brezplačnih vtičnikov [26]. Pri tem je za pogoste scenarije, kot je na primer vključitev
obrazca, na voljo več kot 5.000 vtičnikov. Pri izbiri ustreznega vtičnika med vsemi
obstoječimi alternativami je ključnega pomena, da razvijalec oceni njegovo zanesljivost,
skladnost in dolgoročno vzdrževanje. Priporočljivo je preveriti, ali je vtičnik združljiv z
72

Poglavje 7. Vtičniki

izbrano različico WordPressa ter ali je bil nedavno posodobljen, kar kaže na aktivno
vzdrževanje. Pomemben pokazatelj kakovosti je tudi število prenosov in aktivnih
namestitev, saj večja razširjenost pogosto pomeni stabilnost in uporabnost. Poleg tega je
smiselno upoštevati povprečno oceno uporabnikov in prebrati komentarje, kjer uporabniki
delijo konkretne izkušnje glede delovanja, podpore in morebitnih težav. Kombinacija teh
kriterijev omogoča premišljeno izbiro vtičnika, ki bo varno in učinkovito služil potrebam
spletnega mesta. Primer predstavljenih odločitvenih faktorjev, ki vplivajo na izbiro
vtičnika, je prikazan na sliki 7.2.

Slika 7.2. Izbira vtičnika – pregled odločitvenih faktorjev.

Posebno pozornost je treba nameniti tudi t. i. »freemium« vtičnikom, ki so v osnovni
različici brezplačni, a ponujajo dodatne funkcije le ob plačilu. Tak model je sicer primeren
za večino izbranih vtičnikov, vendar je pri odločitvi treba upoštevati, ali osnovna različica
zadostuje potrebam projekta in ali bo nakup naprednih funkcionalnosti nujen.

� Pred namestitvijo in aktivacijo vtičnika na spletnem mestu je dobro pregledati
dokumentacijo vtičnika in preizkusiti vtičnik v izoliranem okolju, na primer na t. i.
igrišču na naslednji povezavi https://playground.wordpress.net/.

7.1.1 Pregled najpogosteje uporabljenih vtičnikov

Kot predhodno omenjeno, WordPress že v uradnem katalogu ponuja na tisoče vtičnikov,
ki pokrivajo najrazličnejše potrebe – od osnovne optimizacije strani, varnosti in
generiranja rezervnih kopij do analitike, obrazcev in spletne prodaje. Zaradi tako obsežne
ponudbe je za uporabnike koristno poznavanje vtičnikov, ki v skupnosti razvijalcev veljajo

73

https://playground.wordpress.net/

7.1. Izbira vtičnikov

kot zanesljivi, razširjeni in dobro podprti. V preglednici 8.1 je predstavljen pregled nekaj
priljubljenih brezplačnih vtičnikov iz uradnega kataloga WordPress [26], ki se uporabljajo
na milijonih spletnih mest po vsem svetu. Njihova priljubljenost je običajno posledica
kombinacije enostavne uporabe, zanesljive podpore in aktivne skupnosti.

Preglednica 7.1. Primeri najbolj razširjenih brezplačnih vtičnikov WordPress
(podatki iz uradnega imenika vtičnikov [26], julij 2025).

Ime vtičnika Opis Aktivne
namestitve

Povprečna
ocena

Yoast SEO Optimizacija spletnih strani za
iskalnike

10+ milijonov 5 / 5

Contact Form 7 Ustvarjanje kontaktnih obrazcev 10+ milijonov 4 / 5

Elementor
Vizualni urejevalnik strani 10+ milijonov 4.5 / 5

WooCommerce Vzpostavitev spletne trgovine 7+ milijonov 4.5 / 5

Akismet
Anti-Spam

Samodejna zaščita pred
nezaželenimi komentarji

6+ milijonov 4.5 / 5

Wordfence
Security

Varnostni vtičnik s požarnim zidom 5+ milijonov 4.5 / 5

Jetpack
Vse-v-enem orodje za varnost,
hitrost in statistiko

4+ milijoni 3.5 / 5

WPForms Lite Uporabniku prijazen ustvarjalnik
obrazcev

6+ milijonov 5 / 5

UpdraftPlus Varnostno kopiranje in obnova
spletne strani

3+ milijone 5 / 5

LiteSpeed
Cache

Optimizacija hitrosti in
predpomnjenje

7+ milijonov 5 / 5

Advanced
Custom Fields
(ACF®)

Prilagoditev lastnih tipov
prispevkov

2+ milijona 4.5 / 5

74

Poglavje 7. Vtičniki

7.2 Uporaba vtičnikov

Delo z vtičniki v WordPressu vključuje več faz, od namestitve do dejanske uporabe v
vsebini spletnega mesta in vzdrževanja. Prvi korak je namestitev vtičnika, ki jo lahko
izvedemo neposredno iz nadzorne plošče (Vtičniki → Dodaj vtičnik), kot je prikazano na
sliki 7.3a ali z ročnim prenosom in nalaganjem stisnjene datoteke ZIP. Po namestitvi je
treba vtičnik aktivirati (slika 7.3b), da se funkcionalnosti vključijo v delovanje spletne
strani. Naslednji korak je nastavitev in prilagoditev. Večina vtičnikov ponuja možnosti
nastavljanja z uporabniškim vmesnikom znotraj nadzorne plošče, kot je prikazano na
sliki 7.3c. Ob aktivaciji vtičnika ta običajno doda bližnjico do nastavitev v meni – bodisi
kot svojo menijsko postavko ali podpostavko obstoječega menija (najpogosteje menija
Orodja ali menija Nastavitve). Naprednejši vtičniki omogočajo tudi integracijo z vnaprej
določenimi dogodki (več o tem v poglavju 8), s katerimi razvijalci lahko prilagodijo
delovanje vtičnika na ravni kode.

a) Iskanje in nameščanje vtičnika.

c) Upravljanje nastavitev vtičnika.

b) Aktivacija vtičnika.

Slika 7.3. Primer namestitve in aktivacije vtičnika Contact Form 7.

Vtičniki se nato uporabljajo na različne načine, odvisno od njihovega namena. Pogosto
omogočajo upravljanje prek nastavitvenih zaslonov v skrbniškem vmesniku, vstavljanje
funkcionalnosti prek blokov urejevalnika Gutenberg ali vizualnih urejevalnikov ali pa

75

7.2. Uporaba vtičnikov

vključitev s pomočjo kratkih kod (angl. Shortcode) neposredno v besedilo prispevkov in
strani. Na ta način WordPress omogoča tako začetnikom kot naprednim uporabnikom, da
učinkovito vključujejo dodatne funkcije brez obsežnega programiranja. Primer vključitve
obrazca s kratko kodo, ki je bil zgrajen z vtičnikom Contact Form 7, je predstavljen
na sliki 7.4. Na sliki 7.4a je predstavljena nastavitev novega obrazca »Moj kontaktni
obrazec«. Na sliki 7.4b je prikazana vključitev vtičnika na stran Kontakt prek bloka
urejevalnika Gutenberg »kratka koda«. Contact Form 7 v Gutenberg doda tudi lasten
gradnik, ki je prikazan na sliki 7.4c. Vključitev obrazca je tako omogočena s tem
namenskim gradnikom ali s splošnim gradnikom »kratka koda«. Na sliki 7.4d je
nato prikazan dejanski izgled kontaktnega obrazca na strani »Kontakt«, kot jo vidijo
obiskovalci strani (pri tem je bil ohranjen le en gradnik – prikazan na sliki 7.4b, ohranitev
obeh gradnikov, prikazana na sliki 7.4c, bi namreč povzročila podvojen prikaz obrazca).

a) Nastavitev primera.

c) Gradnik »kratka koda« in namenski
gradnik Contact Form.

b) Vključitev obrazca s kratko kodo.

d) Izgled vdelanega kontaktnega obrazca.

Slika 7.4. Primer uporabe vtičnika Contact Form 7 s kratko kodo.

76

Poglavje 7. Vtičniki

7.3 Razvoj lastnega vtičnika

Razvoj lastnih vtičnikov v sistemu WordPress omogoča razširitev funkcionalnosti
spletnega mesta brez poseganja v jedro sistema. Lasten razvoj omogoča ohranjanje
popolnega nadzora nad obsegom in zahtevami funkcionalnosti, testiranjem ter nadzor
nad posegi v podatkovno bazo in jedro sistema. Hkrati omogoča popoln nadzor nad
upravljanjem z morebitnimi občutljivimi podatki. Gre za uveljavljen pristop, ki omogoča
modularno dodajanje novih zmožnosti, s čimer se ohranjajo prilagodljivost, vzdržljivost
in nadgradljivost spletnega okolja. Temeljna struktura in dobre prakse razvoja vtičnikov
so zbrane v uradnem priročniku WordPress Plugin Developer Handbook [33]. Slednji
vključuje dokumentacijo o ključnih temah, kot so uporaba akcij in filtrov, varnostna
priporočila, obravnava zasebnosti, upravljanje z metapodatki, delo z uporabniki ter
definiranje lastnih tipov prispevkov in taksonomij. Priročnik predstavlja standardiziran
vir informacij, ki ga razvija in vzdržuje skupnost WordPress, in s tem zagotavlja
aktualnost ter usklajenost z razvojem platforme.
Primer 7.3.1 predstavlja razvoj preprostega vtičnika. Osnovni koraki razvoja vtičnika so
naslednji:

1. Izbira imena vtičnika (ime mora biti unikatno in se ne sme ponavljati z imeni drugih
vtičnikov, ki so že nameščeni na spletnem mestu).

2. Ustvarjanje direktorija vtičnika in datoteke PHP v:
wp-content/plugins/ime-vticnika/{primer-vticnika}.php.

3. Dodajanje glave datoteki PHP. Oblika glave je pri tem definirana vnaprej in
predstavljena v primeru 7.3.1.

4. Programiranje za dodajanje funkcionalnosti. Pri tem so razvijalcem na voljo vse
funkcije in razredi PHP, celoten nabor dogodkov, funkcij in razredov WordPress, ki
so predstavljeni v poglavju 8.

5. Aktivacija vtičnika na spletni strani.

77

7.3. Razvoj lastnega vtičnika

Primer 7.3.1 (Primer razvoja preprostega vtičnika za izpis avtorskih pravic.)

<?php

/*

Plugin Name: Primer vtičnika

*/

// Funkcija, ki se izvede, ko uporabimo kratko kodo [avtorske-pravice]

function izpisi_avtorske_pravice() {

$leto = date('Y');

$sporocilo = "<p>Praktikum © $leto</p>";

return $sporocilo;

}

// Registracija kratke kode

add_shortcode('avtorske-pravice', 'izpisi_avtorske_pravice');

?>

Dodajanje vtičnika iz zgornjega primera je za večjo jasnost prikazano tudi na sliki 7.5.
Slika 7.5a prikazuje ustvarjanje direktorija z imenom vtičnika (brez presledkov, brez
šumnikov) v wp-content/plugins. Sledi dodajanje istoimenske datoteke PHP znotraj
tega direktorija, ki je prikazano na sliki 7.5b. Po tem je mogoče delovanje vtičnika
preveriti z njegovo aktivacijo prek nadzorne plošče (slike 7.5c). Če na nadzorni plošči
ne vidimo izpisa nobene napake, so bili vsi koraki do sedaj uspešno izvedeni. Vtičnik
iz primera je definiral kratko kodo – za njegovo uporabo jo je treba umestiti še na
poljubno mesto na spletni strani. Na primeru 7.5d je prikazana vključitev kratke kode
[avtorske-pravice] z gradnikom »kratka-koda« v nogo strani. Morebitne sintaktične
napake vtičnika bi bile razvidne takoj po shranjevanju strani z novo dodano kratko kodo.
Če teh ni, preverimo še izgled strani z dodanim gradnikom, ki je prikazan na sliki 7.5e.

7.3.1 Upravljanje vtičnika preko nadzorne plošče WordPress

Da bi bilo možno upravljanje vtičnika preko nadzorne plošče WordPress, je treba
osnovno strukturo vtičnika ustrezno razširiti. Ključni korak pri tem je dodajanje lastne
strani z nastavitvami v nadzorno ploščo, kar se najpogosteje izvaja z uporabo funkcije
add_menu_page() ali z akcijo admin_menu. Na tej strani je nato mogoče implementirati
dodatne funkcionalnosti, kot so obrazci za vnos podatkov, preverjanje veljavnosti in
78

Poglavje 7. Vtičniki

a) Ustvarjanje direktorija »primer-vticnika«.

c) Aktivacija vtičnika.

b) Dodajanje datoteke
primer-vticnika.php.

d) Dodajanje definirane kratke kode
[avtorske-pravice] v nogo.

e) Končni izgled noge.

Slika 7.5. Primer razvoja in uporabe preprostega vtičnika iz primera 7.3.1.

obdelava nastavitev. Za shranjevanje in upravljanje podatkov se uporablja uradni
vmesnik WordPress Settings API [34], ki omogoča varno in standardizirano upravljanje
nastavitev znotraj vtičnika. Takšna razširitev primera 7.3.1 je prikazana na primeru 7.3.2.

79

7.3. Razvoj lastnega vtičnika

Primer 7.3.2 (Razširitev vtičnika z dodajanjem možnosti upravljanja z nadzorno
ploščo.)

<?php

/*

Plugin Name: Primer vtičnika

*/

// 1. Kratka koda

function izpisi_avtorske_pravice() {

$besedilo = get_option('avtorske_pravice_text',

'Praktikum © ' . date('Y'));

return "<p>" . esc_html($besedilo) . "</p>";

}

add_shortcode('avtorske-pravice', 'izpisi_avtorske_pravice');

// 2. Dodajanje nove strani z nastavitvami v meni

function dodaj_avtorske_pravice_nastavitve() {

add_options_page(

'Avtorske Pravice Nastavitve',

'Avtorske Pravice',

'manage_options',

'avtorske_pravice_nastavitve',

'prikazi_avtorske_pravice_nastavitve'

);

}

add_action('admin_menu', 'dodaj_avtorske_pravice_nastavitve');

// 3. Izpis obrazca z nastavitvami

function prikazi_avtorske_pravice_nastavitve() {

?>

<div class="wrap">

<h2>Avtorske Pravice Nastavitve</h2>

<form method="post" action="options.php">

<?php

settings_fields('avtorske_pravice_nastavitve_skupina');

do_settings_sections('avtorske_pravice_nastavitve_skupina');

?>

80

Poglavje 7. Vtičniki

Primer (nadaljevanje)

<table class="form-table">

<tr valign="top">

<th scope="row">Besedilo Avtorskih Pravic:</th>

<td>

<input type="text" name="avtorske_pravice_text" value="

<?php

echo esc_attr(get_option('avtorske_pravice_text',

'Praktikum © ' . date('Y')));

?>" />

<p class="description">

Vnesite besedilo za prikaz avtorskih pravic.

</p>

</td>

</tr>

</table>

<?php submit_button(); ?>

</form>

</div>

<?php

}

// 4. Registracija nastavitev

function avtorske_pravice_nastavitve_register() {

register_setting(

'avtorske_pravice_nastavitve_skupina',

'avtorske_pravice_text');

add_settings_section(

'avtorske_pravice_nastavitve_sekcija',

'Nastavitve Besedila',

'',

'avtorske_pravice_nastavitve_skupina');

}

add_action('admin_init', 'avtorske_pravice_nastavitve_register');

?>

81

7.3. Razvoj lastnega vtičnika

Razširjen primer 7.3.2 je prikazan na sliki 7.6. Po shranjevanju posodobljene kode vtičnika
lahko na nadzorni plošči opazimo dodane nastavitve za upravljanje z vsebino polja za
avtorske pravice (slika 7.6a). Po shranjevanju posodobljene vrednosti polja se ta posodobi
tudi v nogi strani, kjer je kratka koda še vedno uporabljena (slika 7.6b).

a) Dodajanje nastavitev vtičnika v meni Nastavitve.

b) Posodobljen izgled v nogi strani.

Slika 7.6. Razširitev vtičnika z dodajanjem možnosti upravljanja prek
nadzorne plošče.

82

POGLAVJE 8

Dogodki, funkcije in razredi
Wordpress

V sistemu WordPress predstavljajo dogodki (angl. Hooks) mehanizem, ki omogoča
razširjanje in spreminjanje obnašanja sistema ali vtičnikov brez poseganja v izvorno
kodo osrednjih datotek. Gre za vnaprej definirane točke v izvajanju WordPressa,
tj. dogodke, ki so navedeni v dokumentaciji WordPressa ali vtičnika. Ta pristop
prispeva k boljši modularnosti, združljivosti med razširitvami in večji varnosti pri
posodabljanju jedra. WordPress podpira dve osnovni vrsti dogodkov: akcije (angl.
Actions), ki omogočajo izvajanje dodatne funkcionalnosti ob določenem dogodku (npr. po
shranjevanju prispevka), ter filtre (angl. Filters), ki omogočajo spremembo podatkov pred
prikazom ali obdelavo (npr. sprememba vsebine naslova). V tem poglavju predstavljamo
tudi ključne funkcije WordPress (angl. WordPress Functions) in razrede WordPress
(angl. WordPress Classes), ki so pogosto uporabljeni v kombinaciji z dogodki z namenom
razširjanja in spreminjanja obnašanja sistema ali vtičnikov.

8.1 Akcije in filtri

Uporaba dogodkov je temeljna za razvoj vtičnikov in tem, saj omogoča elegantno
integracijo v sistem brez spreminjanja izvornih datotek. Seznam vseh razpoložljivih
akcij [35] in filtrov [36] je na voljo v uradni dokumentaciji WordPress. Za uporabo
dogodkov v WordPress okolju je treba upoštevati dva ključna koraka:

1. Najprej je treba definirati lastno funkcijo, ki bo služila kot povratni klic (angl.
Callback) in določala, kaj naj se izvede ali spremeni ob določenem dogodku.

8.1. Akcije in filtri

Ta funkcija mora biti strukturirana tako, da sprejme ustrezne parametre, ki jih
WordPress posreduje v okviru izbranega dogodka.

2. Nato je treba to funkcijo registrirati z ustreznim dogodkom, kar se izvede z uporabo
funkcije add_action() za akcije ali add_filter() za filtre. S tem WordPress
poveže dogodek s funkcijo, ki naj se izvede ob nastopu tega dogodka. Tak način
povezovanja omogoča dinamično razširjanje funkcionalnosti brez posegov v jedro
sistema ali v obstoječe vtičnike [37].

Akcija ali filter? Akcije [35] omogočajo dodajanje podatkov ali spreminjanje
delovanja. Akcije ne vračajo podatkov. Na primer, če želimo po uspešni prijavi
uporabnika poslati obvestilo skrbniku po e-pošti, bi uporabili akcijo, saj gre za
dodatno funkcionalnost, ki ne vpliva na izhodne podatke. Filtri [36] omogočajo
preoblikovanje podatkov in hkrati vrnejo prilagojeno vrednost. Tipičen primer bi
bil, če želimo spremeniti prikaz naslova prispevka tako, da se mu doda oznaka
»Novo!« v primeru sveže vsebine. V tem primeru uporabimo filter, saj želimo
obstoječo vrednost naslovnega niza pred prikazom spremeniti in posredovati nazaj
v sistem. Ključna razlika med njima je torej v tem, da akcije sprožajo dodatna
dejanja brez vračanja vrednosti, medtem ko filtri vračajo spremenjene podatke in
vplivajo na končni izpis ali obnašanje spletnega mesta.

Primer 8.1.1 prikazuje uporabo akcije za uvoz stilnih predlog vtičnika iz datoteke CSS.

Primer 8.1.1 (Uporaba akcije za uvoz stilnih predlog.)

<?php

function uvozi_stilne_predloge_vticnika() {

wp_enqueue_style('primer-vticnika-css', plugin_dir_url(__FILE__) .

'/stili.css');

}

add_action('wp_enqueue_scripts','uvozi_stilne_predloge_vticnika');

?>

Primer prikazuje uporabo filtra za prilagoditev naslova bloga in vračanje preoblikovane
vrednosti nazaj v sistem.

84

Poglavje 8. Dogodki, funkcije in razredi Wordpress

Primer (nadaljevanje)

<?php

function spremeni_naslov_prispevka($title) {

if(get_post_type() === 'post'){

return 'Blog: '. $title;

}

return $title;

}

add_filter('the_title', 'spremeni_naslov_prispevka');

?>

8.2 Funkcije

V WordPressu funkcije predstavljajo osnovno enoto, s katero se izvaja komunikacija
med jedrom, temami in vtičniki. Vsaka funkcija izvaja specifično nalogo, kot so delo
z bazo podatkov, registracija tipov prispevkov, dodajanje filtrov in akcij ter povezovanje
zunanjih orodij. Gre za vgrajene ukaze PHP, ki omogočajo prilagoditev videza, delovanja
in strukture spletnega mesta brez poseganja v jedro. Razumevanje teh funkcij omogoča
učinkovitejše programiranje, večjo prilagodljivost in nadzor nad delovanjem WordPress
okolja.
Primeri nekaj najpogosteje uporabljenih jedrnih funkcij v WordPressu so predstavljeni
v preglednici 8.1. Celoten nabor funkcij je objavljen v središču za razvijalce WordPress
Developer Resources [38].

Preglednica 8.1. Pogosto uporabljene WordPress funkcije in njihov namen [39].
Funkcija Namen / cilj
register_post_type() Registrira lasten tip prispevka, kar omogoča ustvarjanje

strukturiranih vsebin poleg privzetih prispevkov in strani.

add_action() Poveže uporabniško funkcijo z določenim dogodkom v
WordPress jedru, s čimer omogoča razširjanje obnašanja
sistema.

Nadaljevanje na naslednji strani

85

8.3. Razredi

Nadaljevanje tabele 8.1

Funkcija Namen / cilj
add_filter() Omogoča manipulacijo z vrednostmi (npr. vsebino, HTML)

pred njihovim izpisom, tako da filtrira rezultat funkcije.

wp_enqueue_script() Uporablja se za vključevanje datotek JavaScript na pravilen
način s podporo za odvisnosti in verzije.

wp_enqueue_style() Omogoča pravilno vključevanje datotek CSS v temo ali
vtičnik z nadzorom nad nalaganjem.

get_post() Pridobi podatke o prispevku (ali strani) glede na ID
prispevka; pogosto se uporablja pri prilagojenih poizvedbah.

the_content() Izpiše vsebino trenutnega prispevka, filtrirano z vsemi
registriranimi filtri (npr. za kratke kode ali oblikovanje).

get_template_part() Naloži del predloge (npr. content.php) in omogoča ponovno
uporabo strukturiranih vsebinskih blokov v temah.

add_theme_support() Vključi podporo za dodatne funkcije teme (npr. sličice,
menije, HTML5), kar omogoča boljše integracije.

register_taxonomy() Registrira taksonomijo (kategorijo ali oznako), ki jo lahko
povežemo s privzetimi prispevki ali lastnimi tipi prispevkov za
boljšo kategorizacijo.

have_posts(),
the_post()

Zanka predstavlja osnovni mehanizem WordPressa za iteracijo
skozi prispevke. Funkcija have_posts() preverja, ali obstaja
še kakšen prispevek, medtem ko funkcija the_post() pripravi
podatke trenutnega prispevka za izpis z drugimi funkcijami
(npr. the_title(), the_content()).

add_shortcode() Doda novo kratko kodo (npr. [prikazi_recepte]), jo poveže
z uporabniško definirano funkcijo, ki vrne vsebino za
zamenjavo na uporabljenem mestu.

8.3 Razredi

Razred WP_Query je eden izmed ključnih gradnikov sistema WordPress. Uporablja se za
poizvedovanje po vsebinah, kot so prispevki, strani ali lastni tipi prispevkov. Omogoča
natančno določanje pogojev iskanja, filtriranja in razvrščanja rezultatov. V ozadju ga

86

Poglavje 8. Dogodki, funkcije in razredi Wordpress

WordPress uporablja tudi za t. i. glavno poizvedbo (angl. Main Query), ki določa,
katera vsebina se prikaže na posamezni strani. Razvijalci ga pogosto uporabljajo za
ustvarjanje dodatnih, prilagojenih poizvedb v temah in vtičnikih [40]. Primer 8.3.1
prikazuje uporabo razreda WP_Query v kombinaciji z uporabo zanke (angl. The Loop) za
pridobitev objav. Pri tem ukaz wp_reset_postdata() poskrbi, da se globalni kontekst
prispevkov po zaključeni zanki povrne na prvotno stanje, kar prepreči neželeno vplivanje
na druge dele strani.

Primer 8.3.1 (Osnovna uporaba WP_Query in zanke.)

<?php

$args = array(

'post_type' => 'post',

'posts_per_page' => 5

);

$query = new WP_Query($args);

if ($query->have_posts()) :

while ($query->have_posts()) :

$query->the_post(); ?>

<h2><?php the_title(); ?></h2>

<?php the_excerpt(); ?>

<?php endwhile;

wp_reset_postdata();

else :

echo 'Ni objav.';

endif;

?>

Razred WP_Query podpira širok nabor parametrov, ki omogočajo filtriranje vsebin.
Najpogosteje uporabljeni so:

• post_type – določa tip vsebine (npr. post, recept, product),

• posts_per_page – število objav, prikazanih v poizvedbi,

• category_name – filtriranje po imenu kategorije,

• tag – filtriranje po oznakah,
87

8.3. Razredi

• author – prikaz prispevkov določenega avtorja,

• orderby in order – določata vrstni red (npr. po datumu, naslovu ali poljih po
meri),

• meta_query – omogoča iskanje po vrednostih v poljih po meri,

• tax_query – združuje pogoje po različnih taksonomijah,

• date_query – filtrira objave glede na datum (npr. zadnji teden),

• paged – omogoča paginacijo rezultatov.

Poleg praktične uporabe ima razred WP_Query pomembno vlogo v notranji arhitekturi
sistema WordPress. Predstavlja vmesni sloj med podatkovno zbirko in logiko
prikaza vsebine. Namesto neposrednih poizvedb SQL, ki bi jih prožili neposredno
nad podatkovno bazo, omogoča standardiziran način pridobivanja podatkov, s čimer
zagotavlja združljivost med različnimi tipi vsebin in razširitvami. Vsaka poizvedba, ki
jo izvede WordPress, je pravzaprav instanca razreda WP_Query [40].

En WP_Query ali več? Pomembno je razumeti razliko med glavno poizvedbo
in sekundarnimi poizvedbami. Glavna poizvedba se ustvari samodejno ob
nalaganju strani in določa, katera vsebina bo prikazana na trenutnem naslovu
URL. Sekundarne poizvedbe so tiste, ki jih razvijalec ustvari sam, običajno znotraj
predlog ali vtičnikov, kadar želi prikazati dodatne sklope vsebin.

Razred WP_Query sledi objektno orientirani zasnovi, kar omogoča enotno uporabo funkcij,
kot so have_posts(), the_post() in get_posts(). Poleg tega WordPress z uporabo
filtra pre_get_posts omogoča tudi filtriranje in spreminjanje poizvedb še preden se te
izvedejo. To razvijalcem daje možnost vplivanja na rezultate glavne poizvedbe brez
potrebe po neposrednem poseganju v predloge. Z vidika učinkovitosti je WP_Query

optimiziran za delo s podatkovno zbirko WordPress, vendar lahko prekomerna uporaba
kompleksnih parametrov (zlasti pri večnivojskih meta_query ali tax_query) bistveno
poveča čas izvedbe poizvedbe. Pri večjih spletnih mestih je zato priporočljivo uporabljati
predpomnjenje rezultatov in indeksiranje podatkovnih preglednic.

88

Poglavje 8. Dogodki, funkcije in razredi Wordpress

� • Pozabljena uporaba wp_reset_postdata() lahko povzroči napačne naslove in
povezave v nadaljevanju strani.

• Napačna uporaba parametra paged v WP_Query lahko onemogoči delovanje
paginacije.

V preglednici 8.2 je prikazan pregled pogosto uporabljenih razredov v okolju WordPress,
ki tvorijo temelj njegovega objektno orientiranega sistema. Vsak razred ima določeno
vlogo pri upravljanju podatkov, uporabnikov, datotek, vmesnika ali API-ja [41].

Preglednica 8.2. Pogosto uporabljeni WordPress razredi in njihov namen [41].
Razred Namen / cilj
WP_Query Uporablja se za izvajanje poizvedb po prispevkih, straneh ali

lastnih tipih prispevkov; omogoča natančno filtriranje in
razvrščanje ter tvori osnovo glavne poizvedbe.

WP_User Predstavlja uporabnika in omogoča dostop do podatkov, vlog
in zmožnosti; pogosto za preverjanje pravic.

WP_Role Določa vloge in njihove zmožnosti; omogoča dodajanje ali
odstranjevanje pravic.

WP_Error Standardizirano vračanje napak in njihova obravnava brez
prekinjanja izvajanja.

WP_Widget Osnovni razred za gradnike; razvijalci ga razširijo za nove
funkcionalnosti v stranskih vrsticah.

WP_Filesystem Abstrakcijski sloj za datotečne operacije (branje, pisanje,
kopiranje) z združljivostjo med okolji.

WP_REST_Server Obravnava REST API zahteve; registracija poti in izvajanje
metod HTTP (GET, POST, DELETE).

WP_REST_Request Predstavlja posamezno REST zahtevo in omogoča dostop do
parametrov, poti in metod.

WP_REST_Response Oblikovanje in pošiljanje odzivov v REST API, vključno s
statusno kodo in podatki.

WP_Comment_Query Poizvedovanje po komentarjih s filtriranjem po avtorju,
statusu ali tipu objave.

wpdb Globalni razred za delo z bazo; varno izvajanje SQL poizvedb
in pridobivanje rezultatov.

Nadaljevanje na naslednji strani

89

8.4. Praktični primeri uporabe dogodkov, funkcij in razredov

Nadaljevanje tabele 8.2

Razred Namen / cilj
WP_Theme Predstavlja aktivno temo in omogoča dostop do informacij ter

preverjanje združljivosti.

WP_Filesystem_Direct Podrazred WP_Filesystem za neposredne datotečne operacije
brez FTP.

8.4 Praktični primeri uporabe dogodkov, funkcij in

razredov

8.4.1 Registracija lastnega tipa prispevka in definiranje polj po meri

V primeru 6.5.5 je bilo prikazano dodajanje lastnega tipa prispevka, registriranega
v datoteki functions.php. Pri odločitvi, ali bomo posamezni poseg v WordPress
implementirali v obliki novega vtičnika ali zgolj z dodajanjem kode v datoteko
functions.php v podtemi, je treba upoštevati obseg posega, njegovo kompleksnost in
njegovo dolgoročnost.

Nov vtičnik ali poseg v functions.php? Vnos sprememb v datoteko
functions.php je primeren predvsem za manjše prilagoditve, ki so specifične za
trenutno aktivno temo, kot so dodatne funkcije, registracija menijev ali nalaganje
slogov. Takšne spremembe se nanašajo na prikaz in vedenje strani, vezano na
temo, in ne potrebujejo večje modularnosti ali ponovne uporabe. Po drugi strani
pa se svetuje razvoj ločenega vtičnika, kadar dodajamo funkcionalnost, ki ni vezana
izključno na temo, jo lahko večkrat uporabimo, jo enostavno prenašamo med
spletnimi mesti ali želimo ohraniti prilagoditve ob spremembi teme. Vtičniki so
zato primernejši za samostojne funkcije, ki širijo osnovno delovanje WordPressa
ali drugih vtičnikov, kot je WooCommerce.

Definicijo lastnega tipa prispevka iz primera 6.5.5 lahko torej izvedemo znotraj datoteke
functions.php aktivne podteme ali kot samostojen vtičnik. Kadar je lasten tip
prispevka tesno povezan z določeno temo ali gre za enostavno spletno mesto, kjer
tip prispevka ne potrebuje dolgotrajne prenosljivosti, je smiselno uporabo definirati v
90

Poglavje 8. Dogodki, funkcije in razredi Wordpress

datoteki functions.php. Če pa želimo, da tip prispevka ostane delujoč neodvisno od
uporabljene teme, ga ponovno uporabimo na več projektih ali ga razvijamo ločeno, je
priporočljivo ustvariti lasten vtičnik. S tem zagotovimo večjo modularnost, prenosljivost
in preglednost kode. V obeh primerih se uporablja funkcija register_post_type(),
ključna razlika pa je predvsem v organizaciji in trajnosti rešitve.
Ne glede na mesto vpeljave lastnega tipa prispevka, je njihove nastavitve mogoče
bolj napredno urejati z enim izmed priljubljenih vtičnikov – Advanced Custom Fields
(ACF) [42], prikazanim na sliki 8.1. Ta omogoča razširjeno upravljanje vsebin v
WordPressu s pomočjo po meri definiranih vnosnih polj. Uporabnikom ponuja enostaven
urejevalnik polj, ki jih je mogoče dodajati kjerkoli – na prispevke, strani, uporabnike,
taksonomije, komentarje in celo v lastne nastavitvene strani. Vrednosti teh polj je
nato mogoče enostavno prikazati v datotekah posameznih predlog. ACF tako omogoča
strukturiranje podatkov brez poseganja v kodo ter s tem WordPress spremeni v zmogljiv
sistem za upravljanje vsebin. ACF od različice 6 naprej omogoča tudi registracijo lastnih
tipov prispevkov in taksonomij neposredno z uporabniškim vmesnikom. Komercialna
različica (ACF PRO) dodatno vključuje še nabor dodatnih funkcionalnosti, kot so npr.
ponavljajoča se polja, polja za fleksibilno vsebino ter možnosti za izdelavo lastnih blokov
v vmesniku Gutenberg.

Slika 8.1. Advanced Custom Fields (ACF®) vtičnik.

Po aktivaciji vtičnika je podrobnosti glede dodatnih polj določenega tipa prispevkov
mogoče urediti v nadzorni plošči, v postavki menija ACF. Na sliki 8.2a je v skrbniškem
vmesniku prikazan urejevalnik skupin polj ACF, v katerem sta definirani dve polji (naslov
in opis naloge), pri čemer sta za vsako določena oznaka in tip (besedilo oziroma večvrstični

91

8.4. Praktični primeri uporabe dogodkov, funkcij in razredov

vnos). Poljem je mogoče določati tudi omejitve, obveznost izpolnitve in validacijska
pravila. Na sliki 8.2b je vidna nastavitev pogojev prikaza, kjer je določeno, da naj se
ta skupina polj prikaže zgolj pri prispevkih tipa Recept. Brez te nastavitve pravila
predhodno definiranih polj ne bodo uporabljena. Na sliki 8.2c je nato prikazano vnosno
okolje lastnega prispevka tipa Recept, kjer so vidna polja, dodana z ACF.
Vneseni metapodatki, ki so bili testni vsebini dodani z urejevalnikom (slika 8.2c), so po
shranjevanju uspešno dodani v podatkovno bazo. Vendar njihov prikaz še ni določen. Ob
ogledu vsebine tega prispevka tako pridemo na prazno stran. Za definiranje prikaza na
novo dodanih polj je treba dodati in urediti predlogo single-recept.php. Za hiter
opomnik glede delovanja hierarhije predlog v WordPressu se vrnite na poglavje 5.3.
Primer v nadaljevanju temelji na temi Astra, ki ji je bila dodana otroška tema (kot je
bilo predstavljeno v poglavju 6.5). Skladno s pravili hierarhije predlog je bila v direktorij
otroške teme astra-child dodana datoteka single-recept.php. V njeno vsebino je bila
za večjo skladnost prekopirana vsebina datoteke single.php iz starševske teme Astra.
S tem smo ohranili prikaz glave, drobtinic in stranskega menija. Umestitev datoteke
je prikazana na sliki 8.3a. Izgled prispevka brez sprememb predloge pa je prikazan na
sliki 8.3b.
V kopirani datoteki single.php teme Astra (zdaj single-recept.php) je bila zamenjana
privzeta vrstica za prikaz vsebine astra_content_loop z vsebino, predstavljeno v
primeru 8.4.1. Preostali del predloge je ostal nespremenjen. Iz primera je razvidno, da je
bila za prikaz metapodatkov, ki so bili dodani z novimi polji ACF, uporabljena funkcija
get_field() [43]. Funkcija je del vtičnika ACF in omogoča pridobivanje vrednosti polj
po meri iz določene vsebine v WordPressu. Njena uporaba je ključna pri izpisovanju
vsebin, ki so bile dodane prek vmesnika ACF. Definirana je kot get_field($selector,

[$post_id = false], [$format_value = true], [$escape_html = false]);. Pri
tem funkcija sprejme naslednje parametre [43]:

• $selector (niz, obvezno) – ime ali ključ polja, ki ga želimo pridobiti.

• $post_id (opcijsko) – ID prispevka (ali uporabnika, termina itd.), iz katerega se
polje bere. Če je vrednost parametra false, se uporabi trenutni prispevek znotraj
zanke (the_loop).

• $format_value (logična vrednost, opcijsko) – določa, ali naj se uporabi logika
formatiranja (npr. za izbire ali datume). Privzeta vrednost je true.

92

Poglavje 8. Dogodki, funkcije in razredi Wordpress

a) Dodajanje nastavitev vtičnika v meni Nastavitve.

b) Dodelitev dodanih polj lastnemu tipu prispevka Recept.

c) Dodajanje prve vsebine tipa prispevka Recept.

Slika 8.2. Uporaba ACF za definiranje vnosnih polj tipa prispevka Recept.

• $escape_html (logična vrednost, opcijsko) – če je omogočeno (format_value je
true), vrne HTML-varno različico vrednosti. Privzeta vrednost tega parametra je
false.

93

8.4. Praktični primeri uporabe dogodkov, funkcij in razredov

a)
Dodajanje predloge za lasten tip prispevka Recept.

b) Izgled strani brez dodatne prilagoditve predloge.

Slika 8.3. Dodajanje osnovne predloge za lasten tip prispevka Recept.

94

Poglavje 8. Dogodki, funkcije in razredi Wordpress

Primer 8.4.1 (Prikaz dodanih polj ACF pri lastnem tipu prispevka Recept.)

<?php

if (have_posts()) :

while (have_posts()) :

the_post();

$naslov = get_field('naslov');

$sestavine = get_field('sestavine');

$recept = get_field('recept');

$zahtevnost = get_field('zahtevnost_1-5');

?>

<?php astra_primary_content_top(); ?>

<article <?php post_class(); ?>>

<header class="entry-header">

<h1 class="entry-title"><?php echo esc_html($naslov); ?></h1>

</header>

<div class="entry-content">

<?php if ($zahtevnost) : ?>

<p>Zahtevnost (1–5):

<?php echo esc_html($zahtevnost); ?></p>

<?php endif; ?>

<?php if ($sestavine) : ?>

<p>Sestavine:

<?php echo ($sestavine); ?></p>

<?php endif; ?>

<?php if ($recept) : ?>

<p>Navodila:

<?php echo ($recept); ?></p>

<?php endif; ?>

</div>

</article>

<?php

endwhile;

endif;

?>

95

8.4. Praktični primeri uporabe dogodkov, funkcij in razredov

Izgled testne vsebine, katere vnos je bil predstavljen na sliki 8.3, je po posodobitvi
predloge single-recept.php prikazan na sliki 8.4.

Slika 8.4. Posodobljen prikaz lastnega tipa prispevka Recept.

� Če ob dodajanju predloge za lasten tip prispevka ta ni takoj uporabljena za prikaz, je
mogoče WordPress prisiliti k osvežitvi pravil prikaza. To je mogoče storiti v zavihku
Nastavitve → Trajne povezave. Ob odprtju strani z nastavitvami je preprosto potrebno
klikniti

�� ��Shrani , brez da bi vnesli kakršnekoli spremembe. Naprednejši uporabniki
lahko za to uporabijo funkcijo flush_rewrite_rules(); ali katerega od vtičnikov za
izbris predpomnilnika.

8.4.2 Registracija lastne taksonomije

Dodajanje nove taksonomije je ključen korak pri organizaciji vsebin na strani WordPress,
zlasti kadar uporabljamo lastne tipe prispevkov. S taksonomijami omogočimo dodatno
strukturiranje vsebin, ki presega osnovni sistem kategorij in oznak. Na primer, pri tipu
prispevkov Recept lahko dodamo taksonomijo »Tema« ali »Sezona«, s čimer zagotovimo
96

Poglavje 8. Dogodki, funkcije in razredi Wordpress

boljši pregled, filtriranje in uporabniško navigacijo po vsebini. WordPress omogoča
registracijo taksonomij s funkcijo register_taxonomy() [44], kar omogoča popolno
prilagoditev konvencij imenovanja, hierarhične strukture in povezave z določenimi tipi
prispevkov. Nove taksonomije je enako kot nove tipe prispevkov mogoče dodati v kodi
ali z vtičnikom ACF. Primer 8.4.2 prikazuje dodajanje nove taksonomije v kodi.

Primer 8.4.2 (Dodajanje taksonomije Tip obroka lastnemu tipu prispevkov
Recept.)

<?php

function dodaj_taksonomijo_tip_obroka() {

register_taxonomy('tip_obroka', 'recept',

array(

'labels' => array(

'name' => 'Tip obroka',

'singular_name' => 'Tip obroka'

),

'public' => true,

'hierarchical' => true,

'show_in_rest' => true,

)

);

}

add_action('init', 'dodaj_taksonomijo_tip_obroka');

?>

Po dodajanju taksonomije Tip obroka (in po povezavi taksonomije s tipom prispevka
Recepti) je ta na voljo v nadzorni plošči v postavki menija Recepti → Tip obroka, kot
je prikazano na sliki 8.5.

Lasten tip prispevka ali taksonomija? Lasten tip prispevka v WordPressu je
smiselno uporabiti, kadar se struktura vsebine razlikuje od obstoječih prispevkov,
kadar potrebujemo dodatno funkcionalnost (npr. povezavo z e-trgovino),
želimo drugačen prikaz ali lažjo administracijo vsebin ter različna dovoljenja
za uporabnike. Po drugi strani je smiselno ustvariti novo taksonomijo, kadar
želimo vsebine s podobno strukturo le bolje organizirati, izboljšati SEO, omogočiti
označevanje z oznakami ali hierarhično klasifikacijo ter s tem izboljšati uporabniško
izkušnjo in upravljanje vsebine.

97

8.4. Praktični primeri uporabe dogodkov, funkcij in razredov

Slika 8.5. Prikaz dodane taksonomije pri tipu prispevka Recept.

8.4.3 Uporaba dogodkov za posege v delovanje vtičnikov

Nekateri naprednejši vtičniki omogočajo razvijalcem posege v vnaprej določena mesta
vtičnika na podoben način, kot je to omogočeno na jedru sistema WordPress. Primer
takšnega vtičnika je WooCommerce, vtičnik, ki funkcionalnosti WordPressa razširja z
dodajanjem celovite spletne trgovine. Zaradi svoje kompleksnosti razvijalcem omogoča,
da sami prilagodijo nekatera mesta dodanih funkcionalnosti spletne trgovine [45]. Celoten
seznam dogodkov, ki jih razvijalci lahko uporabijo, je naveden v dokumentaciji vtičnika
WooCommerce [46]. Na sliki 8.6 [46] je prikazan vizualni vodič po dogodkih, ki jih
WooCommerce omogoča na strani posameznega produkta. Podobni vodiči so na različnih
blogih na voljo tudi za podstrani arhiva vseh izdelkov, za strani košarica, zaključek nakupa
ipd. [47].

98

Poglavje 8. Dogodki, funkcije in razredi Wordpress

Slika 8.6. Dogodki WooCommerce vtičnika na strani posameznega izdelka [47].

Razumevanje in uporaba dogodkov razvijalcem omogočata dinamično vstavljanje vsebin
ali prilagajanje obstoječega vedenja brez potrebe po neposrednih posegih v predloge
tem. S tem se povečuje prenosljivost kode in omogoča večja prilagodljivost, ne glede
na spremembe tem ali posodobitve vtičnika. Uporabnik lahko s pomočjo teh dogodkov

99

8.4. Praktični primeri uporabe dogodkov, funkcij in razredov

doda vsebino pred ali po elementih, kot so gumbi za nakup, opisi izdelkov ali elementi na
zaključni strani nakupa. Kombinacija dokumentacije [45] in vizualnih prikazov [47] tako
omogoča celovit pristop k naprednemu prilagajanju WooCommerce trgovin. Primer 8.4.3
predstavlja uporabo WooCommerce dogodka woocommerce_before_variations_form

za prikaz izbranega besedila preden uporabnik v spletni trgovini izbere variacijo
izdelka (v predstavljenem primeru izbere velikost čevljev). Koda se za preizkus lahko
doda v datoteko functions.php. Predpogoj za njeno delovanje je aktiven vtičnik
WooCommerce, ki uvede dogodek, na katerega se primer navezuje.

Primer 8.4.3 (Primer uporabe dogodka (v functions.php).)

<?php

function shoe_size_notice() {

echo '<div class="woocommerce-info" style="margin-bottom:15px;">

Nasvet glede velikosti:

Naši čevlji so malenkost manjši.

Svetujemo, da naročite pol številke večje čevlje,

kot jih običajno nosite.

</div>';

}

add_action('woocommerce_before_variations_form', 'shoe_size_notice');

?>

Sprememba izgleda strani WooCommerce izdelka, ki je bila sprožena na primeru 8.4.3, je
prikazana na sliki 8.7.

100

Poglavje 8. Dogodki, funkcije in razredi Wordpress

Slika 8.7. Prilagojen izgled z uporabo dogodka WooCommerce (primer 8.4.3).

8.5 WordPress vsebine za razvijalce

Spletno mesto WordPress Developer Resources(https://developer.wordpress.org/) [39]
je osrednje razvojno središče za razvijalce, ki želijo graditi teme, vtičnike ali
razširitve za WordPress. Ponuja celovito dokumentacijo jedrnih funkcij (kot je npr.
register_post_type()), razredov in API-jev, varnostne prakse, postopke razvoja z
blokovnim urejevalnikom Gutenberg in še mnogo več. Poleg referenc vsebuje tudi
priročnike, primere uporabe ter povezave do razvojnega bloga in odprtokodne kode.
Zaradi rednih posodobitev in natančne razlage funkcionalnosti je to nepogrešljiv vir za
vsak resnejši razvoj v okolju WordPress.

101

https://developer.wordpress.org/

POGLAVJE 9

WordPress kot brezglavi sistem za
upravljanje vsebin

V sodobnem spletnem razvoju se WordPress vse pogosteje uporablja kot brezglavi sistem
za upravljanje z vsebinami (angl. Headless Content Management System). Pri tem je
njegova vloga omejena na shranjevanje in urejanje vsebin, prikaz pa prevzame ločeno
razvito obličje. Tak pristop omogoča večjo prilagodljivost, zmogljivejšo uporabniško
izkušnjo in boljšo integracijo s sodobnimi tehnologijami, kot so ogrodja JavaScript (npr.
React, Next.js ali Vue.js). Pri tem odjemalci najpogosteje dostopajo do podatkov s
programskim vmesnikom WordPress REST API ali s programskim vmesnikom GraphQL.

9.1 Dostop do podatkov s programskeim vmesnikom

WordPress REST API

WordPress REST API omogoča standardiziran vmesnik za komunikacijo z WordPress
spletnimi mesti prek izmenjave podatkov v obliki JSON. Vmesnik zagotavlja t. i. končne
točke (angl. Endpoints), ki omogočajo dostop do vgrajenih vsebin, kot so prispevki,
strani in taksonomije. Čeprav je zasnovan predvsem za razvijalce, omogoča strukturirano,
varno in razširljivo interakcijo z vsebino spletnega mesta brez potrebe po neposredni
obdelavi predlog PHP. Javna vsebina je dostopna brez avtentikacije, medtem ko so dostopi
do zasebne vsebine, meta podatkov ali uporabniških informacij zaščiteni in zahtevajo
ustrezna dovoljenja.

9.1. Dostop do podatkov s programskeim vmesnikom WordPress REST API

9.1.1 Privzete končne točke

Sistem vsebuje vnaprej definirane končne točke, kot je na primer /wp-json/wp/v2/posts,
ki omogoča dostop do prispevkov. Pri registraciji lastnih tipov prispevkov je za
izpostavitev vsebin treba eksplicitno omogočiti podporo za REST API – običajno z
nastavitvijo parametra 'show_in_rest'=> true – saj se ti tipi sicer ne vključijo
samodejno v razpoložljive končne točke API-ja. Pri tem je mogoče definirati tudi obliko
končne točne (npr. 'rest_base'=> 'projekti'). Pridobivanje prispevkov je prikazano
na primeru 9.1.1.

Primer 9.1.1 (Izsek odziva za zahtevek /wp-json/wp/v2/posts prek vmesnika
WordPress REST API.)

[

{

"id": 1,

"date": "2025-07-20T12:58:04",

"date_gmt": "2025-07-20T12:58:04",

"guid": { "rendered": "http://primer.local/?p=1" },

"modified": "2025-07-20T12:58:04",

"modified_gmt": "2025-07-20T12:58:04",

"slug": "primer-prispevka",

"status": "publish",

"type": "post",

"link": "http://primer.local/primer-prispevka/",

"title": { "rendered": "Primer prispevka" },

"content": {

"rendered": "\n\u003Cp\u003EDobrodošli v svet WordPressa!\u003C/p\u003E\n",

"protected": false

},

"excerpt": {

"rendered": "\n\u003Cp\u003EDobrodošli v svet WordPressa!\u003C/p\u003E\n",

"protected": false

},

"author": 1,

"featured_media": 0,

"comment_status": "open",

"ping_status": "open",

104

Poglavje 9. WordPress kot brezglavi sistem za upravljanje vsebin

Primer (nadaljevanje)

"sticky": false,

"template": "",

"format": "standard",

...

}

]

Prav tako je možno dostopati do taksonomij. Za pridobitev seznama vseh razpoložljivih
taksonomij uporabimo končno točko GET /wp/v2/taxonomies. Odgovor vsebuje podatke
o vseh registriranih taksonomijah v sistemu (npr. kategorije, oznake ali lastne
taksonomije). Če želimo pridobiti podrobnosti o točno določeni taksonomiji, uporabimo
končno točko z identifikatorjem GET /wp/v2/taxonomies/<taksonomija>. Primer
rezultatov dostopa do končne točke http://primer.local/wp-json/wp/v2/categories

je prikazan na primeru 9.1.2. Prikazuje podrobnosti prve izmed dodanih kategorij –
»Glavna jed«.

Primer 9.1.2 (Odsek odziva za zahtevek /wp-json/wp/v2/categories z
vmesnikom WordPress REST API.)

[

{

"id": 23,

"count": 1,

"description": "",

"link": "http://primer.local/category/recepti/glavne-jedi/",

"name": "Glavne jedi",

"slug": "glavne-jedi",

"taxonomy": "category",

"parent": 21,

"meta": [],

"acf": [],

"_links": {

"self": [

{

"href": "http://primer.local/wp-json/wp/v2/categories/23",

"targetHints": { "allow": ["GET"] }

105

9.1. Dostop do podatkov s programskeim vmesnikom WordPress REST API

Primer (nadaljevanje)

}

],

"collection": [

{ "href": "http://primer.local/wp-json/wp/v2/categories" }

],

"about": [

{ "href": "http://primer.local/wp-json/wp/v2/taxonomies/category" }

],

"up": [

{

"embeddable": true,

"href": "http://primer.local/wp-json/wp/v2/categories/21"

}

],

"wp:post_type": [

{

"href": "http://primer.local/wp-json/wp/v2/posts?categories=23"

}

]

}

}

]

Vmesnik WordPress REST API poleg dostopa do prispevkov omogoča tudi dostop
do drugih virov, kot so medijske datoteke (na primer slike, dokumenti, zvok in
video), ki so v sistemu shranjene kot poseben tip prispevkov. Vsak medijski element
vsebuje strukturirane podatke, kot so ID, naslov, povezava, tip datoteke, tip MIME
(angl. Multipurpose Internet Mail Extensions), metapodatki (npr. dimenzije slike) ter
spremljajoča besedila (alternativen opis, napis). Dostop do medijskih datotek je mogoč
prek končne točke /wp/v2/media [48]. Z njo lahko:

• pridobimo seznam datotek (GET /wp/v2/media), kjer so rezultati omejeni s
parametri za filtriranje, paginacijo, avtorja, status, tip ali tip MIME;

• ustvarimo nov medijski element (POST /wp/v2/media), pri čemer se poleg datoteke
po želji podajo tudi dodatni podatki, kot so naslov, alternativen opis ali povezava
na prispevek;

106

Poglavje 9. WordPress kot brezglavi sistem za upravljanje vsebin

• pridobimo posamezen element (GET /wp/v2/media/id), kjer se vrnejo vse
informacije o določeni datoteki;

• posodobimo element (POST /wp/v2/media/id), npr. za spremembo napisa,
alternativnega opisa ali povezanega prispevka;

• izbrišemo element (DELETE /wp/v2/media/id), bodisi z uporabo koša bodisi z
neposredno trajno odstranitvijo (force=true).

Na ta način vmesnik WordPress REST API omogoča, da so medijske datoteke enako
dostopne in upravljive kot prispevki in druge vrste vsebin.

9.1.2 Globalni parametri, paginacija in razvrščanje

Pri dostopu do podatkov preko vmesnika WordPress REST API je na voljo veliko
globalnih parametrov [49], ki veljajo za vse končne točke in omogočajo nadzor nad
načinom pridobivanja in oblikovanja podatkov. Poleg tega je pri delu z večjimi zbirkami
virov nujno razumevanje paginacije, ki omogoča razdelitev podatkov na obvladljive dele.
Globalni parametri (imenovani tudi metaparametri) delujejo na ravni celotnega odziva in
so na voljo pri vseh končnih točkah. Najpogosteje uporabljeni parametri so predstavljeni
v preglednici 9.1.

Preglednica 9.1. Pregled najpogostejših globalnih parametrov vmesnika WordPress
REST API [49].

Parameter Opis in primer uporabe
_fields Omogoča pridobivanje samo določenih polj vira, kar zmanjša obseg

vrnjenih podatkov in izboljša učinkovitost.
Primer: /wp/v2/posts?_fields=id,title,excerpt,link

_embed Poleg osnovnega vira vrne tudi povezane vire (npr. avtor ali
taksonomije), kar zmanjša število potrebnih zahtevkov.
Primer: /wp/v2/posts?_embed=author,wp:term

_method (ali glava X-HTTP-Method-Override) Omogoča združljivost kadar
strežnik ali odjemalec ne podpira vseh HTTP metod (npr. DELETE).
Primer: /wp/v2/posts/42?_method=DELETE

_envelope Vse podatke odziva (telo, glave, status) vrne v JSON obliki znotraj
telesa, kar je uporabno pri omejitvah posrednikov ali odjemalcev.

107

9.1. Dostop do podatkov s programskeim vmesnikom WordPress REST API

Pri delu z večjo količino podatkov vmesnik WordPress REST API privzeto vrne omejeno
število virov na stran (privzeto 10). To omogoča enostavnejše nalaganje in obdelavo
podatkov. Paginacijo nadzorujemo s parametri, predstavljenimi v preglednici 9.2.

Preglednica 9.2. Parametri za paginacijo v vmesniku WordPress REST API [50].
Parameter Opis in primer uporabe
?page= Določi stran rezultatov v zbirki.

Primer: /wp/v2/posts?page=2

?per_page= Določi število vrnjenih zapisov na stran (veljavne vrednosti: 1–100).
Primer: /wp/v2/posts?per_page=5

?offset= Določi zamik, od katerega naj se začnejo vračati rezultati.
Primer: /wp/v2/posts?offset=15

Za nadzor nad vrstnim redom rezultatov sta na voljo še dva dodatna parametra.
Parameter ?order= določa naraščajoč (asc) ali padajoč (desc) vrstni red. Parameter
?orderby= pa določa lastnost, po kateri so rezultati razvrščeni (npr. date, title,
id, slug). Vsak paginiran odziv vključuje tudi glavi X-WP-Total (skupno število
zapisov) in X-WP-TotalPages (skupno število strani), kar omogoča natančno upravljanje
z nadaljnjimi zahtevki [50].

9.1.3 Avtentikacija in dovoljenja

Vmesnik WordPress REST API privzeto omogoča prost dostop do javno objavljenih
vsebin, kot so prispevki in strani. V primeru dostopanja do zaščitenih virov ali izvedbe
sprememb je potrebna avtentikacija. Standardna metoda avtentikacije v Wordpressu
je avtentikacija s piškotki, ki se uporablja znotraj okolja WordPress, kadar je uporabnik
prijavljen v nadzorno ploščo. Avtentikacija za dostop prek REST API vključuje vrednosti
nonce (angl. Number Used Once) [51], ki preprečujejo napade večdomenskega ponarejanja
zahtevkov oziroma napade CSRF (angl. Cross-Site Request Forgery). Nonce vrednosti
so enkratna kriptografsko števila, ki v Wordpressu delujejo kot varnostni žetoni, ki so
vezani na uporabnika in akcijo ter služijo zaščiti naslove URL in obrazcev pred zlorabami.
Pri uporabi vtičnikov in tem je podpora temu mehanizmu vgrajena, medtem ko je pri
ročnih zahtevkih AJAX nonce treba posredovati v glavi zahteve (X-WP-Nonce) ali kot

108

Poglavje 9. WordPress kot brezglavi sistem za upravljanje vsebin

parameter. Avtentikacija s piškotki je zanesljiva izbira za razvoj rešitev, ki delujejo znotraj
WordPressa [52].
Od različice 5.6 WordPress vključuje tudi podporo za applikacijska gesla, ki omogočajo
osnovno avtentikacijo HTTP prek varne povezave HTTPS. Gesla za aplikacije se
generirajo v uporabniškem profilu in so priporočena rešitev za varno povezovanje
oddaljenih aplikacij s sistemom.
Za naprednejše integracije so na voljo vtičniki za avtentikacijo, kot sta OAuth 1.0 [53] in
JSON Web Tokens (JWT) [54], ki omogočajo prilagodljive in standardizirane pristope,
zlasti v scenarijih, kjer so potrebne bolj kompleksne oblike avtorizacije.
V profilu uporabnika v nadzorni plošči obstaja tudi možnost dodajanja gesla aplikacij,
ki je primerno predvsem za razvoj in testiranje, saj zahteva posredovanje uporabniškega
imena in gesla pri vsaki zahtevi [52].

9.1.4 Praktični primer uporabe podatkov na ločenem obličju

Primer 9.1.3 prikazuje preprosto uporabo sistema WordPress kot brezglavega sistema
za upravljanje vsebin. Vsebinski prispevki so pridobljeni iz končne točke, ki jih nato s
pomočjo jezika JavaScript prikažemo na preprostem obličju.

109

9.1. Dostop do podatkov s programskeim vmesnikom WordPress REST API

Primer 9.1.3 (Prikaz podatkov iz vmesnika WordPress REST API na preprostem
obličju.)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>Posts</title>

<style>

body {

font-family: sans-serif;

padding: 20px;

}

.post {

border: 1px solid #ccc;

padding: 10px;

margin-bottom: 10px;

}

</style>

</head>

<body>

<h1>WordPress Posts</h1>

<div id="posts"></div>

<script>

fetch('http://primer.local/wp-json/wp/v2/posts')

.then(res => res.json())

.then(data => {

const container = document.getElementById('posts');

data.forEach(post => {

const div = document.createElement('div');

div.className = 'post';

div.innerHTML = `

<h2>${post.title.rendered}</h2>

${post.excerpt.rendered}

`;

container.appendChild(div);

});

})

110

Poglavje 9. WordPress kot brezglavi sistem za upravljanje vsebin

Primer (nadaljevanje)

\end{vr}

.catch(err => {

document.body.innerHTML += '<p style="color:red;">

Error: ' + err.message + '</p>';

});

</script>

</body>

</html>

Izgled zgoraj predstavljenega preprostega primera podatkov končne točke prispevkov je
prikazan na sliki 9.1.

Slika 9.1. Izgled primera uporabe podatkov brezglavega sistema WordPress
(primer 9.1.3).

Podobno bi lahko dostopali do vseh omogočenih tipov prispevkov. Za lastne tipe
vsebin (npr. Recepti), ki so bili dodani v kodi, je treba zagotoviti, da je pri definiciji
tipa prispevka v funkciji register_post_type omogočena izpostavitev podatkov prek
vmesnika WordPress REST API. To je doseženo s 'show_in_rest'=> true. Za primer
kode, ki je bil uporabljen za dodajanje lastnega tipa prispevka Recepti, se vrnite k

111

9.1. Dostop do podatkov s programskeim vmesnikom WordPress REST API

primeru 8.4.2.
Če je za upravljanje s podrobnostmi tipa prispevka uporabljen vtičnik ACF, je ključno,
da je v nastavitvah omogočena izpostavitev podatkov prek vmesnika WordPress REST
API, kot je prikazano na sliki 9.2.

Slika 9.2. Omogočanje REST izpostavitve lastnega tipa prispevka Recept v
ACF.

112

Zaključek

To učno gradivo predstavlja zgoščeno, a hkrati dostopno izhodišče za razumevanje
in uporabo sistema WordPress v sodobnem spletnem razvoju. Njegov namen je
bralcu približati WordPress ne le kot orodje za objavljanje spletnih vsebin, temveč
kot zmogljivo in prilagodljivo razvojno okolje. S sistematičneim uvajanjem ključnih
funkcionalnosti gradivo ponuja celovit vpogled v možnosti, ki jih WordPress kot sistem
za upravljanje vsebin ponuja razvijalcem. Vsebina gradiva se po zahtevnosti stopnjuje
– od namestitve, osnovne uporabe sistema WordPress, priprave vsebin, izbire teme
in vtičnikov do naprednejših primerov uporabe, vključno z ustvarjanjem in uporabo
podteme, ustvarjanjem in uporabo lastnih vtičnikov, prilagajanjem delovanja WordPressa
z uporabo dogodkov in uporabo WordPressa kot brezglavega sistema za upravljanje
vsebin. Na ta način gradivo presega zgolj klasično obravnavo urejevalnika vsebin in
uporabnika v vlogi skrbnika spletne strani. Bralce spodbujamo, da WordPress razumejo
kot modularni sistem, ki ga je mogoče razširiti, nadgraditi in vključiti v različna digitalna
okolja – od preprostih spletnih strani do spletnih trgovin in spletnih aplikacij po meri.
Poleg teoretičnih razlag smo se avtorji v gradivo trudili vključiti več praktičnih primerov,
izvorno kodo za pogoste prilagoditve in vizualne predstavitve, s čimer upamo, da smo
olajšali učenje tudi začetnikom. Čeprav učno gradivo tega ne zajema, bralce spodbujamo,
da pridobijo znanja, povezana predvsem z optimizacijo in varnostjo spletnih mest,
temelječih na WordPressu – dva vidika, ki sta še posebej pomembna v svetu WordPressa.
Čeprav se WordPress kot platforma nenehno razvija z novimi različicami, prenovljenim
uporabniškim vmesnikom, izboljšavami varnosti in dodajanjem novih funkcionalnosti,
temeljne arhitekturne zasnove ter razvojni pristopi ostajajo razmeroma stabilni. Osnove,
kot so razširljivost prek tem in vtičnikov, uporaba funkcij in dogodkov, delo s podatki
prek vmesnika REST API ter koncepti, kot so teme, vtičniki, taksonomije, predloge in
dogodki tvorijo jedro sistema, ki se skozi leta bistveno ne spreminja. Tudi če se bodo
posamezne podrobnosti sistema s časom spremenile, bo znanje iz učnega gradiva ostalo
uporabno, saj bralcem podaja temeljna načela.

9.1. Dostop do podatkov s programskeim vmesnikom WordPress REST API

To učno gradivo obravnava širok nabor tem, povezanih z razvojem v okolju WordPress,
vendar kljub temu ostajajo tudi področja, ki so bila zavestno izpuščena ali zgolj nakazana,
a si zaslužijo nadaljnjo obdelavo. Mednje spadajo predvsem testiranje in nadzor kakovosti,
avtomatizirani varnostni pregledi, statična analiza kode ter osnovni funkcionalni testi
uredniških tokov. Prav tako bi bilo smiselno v prihodnje podrobneje obravnavati
zmogljivostne in optimizacijske vidike, kot so predpomnjenje, optimizacija obdelave
medijskih vsebin in spremljanje odzivnosti sistema. Posebno pozornost si zasluži tudi
tematika migracij, kjer bi lahko bolj operativno predstavili procese uvajanja sprememb
na produkcijsko okolje, izdelavo varnostnih kopij in vzpostavitev povratnih scenarijev
ob morebitnih težavah. Ta področja predstavljajo nadaljevalne vsebine, namenjene
naprednejšim uporabnikom in razvijalcem, ki delujejo v kompleksnejših okoljih.

114

Literatura

[1] WordPress.org. FAQ About WordPress. Dostopano: 19. 7. 2025. url: https://codex.
wordpress.org/FAQ_About_WordPress.

[2] Free Software Foundation. GNU General Public License, Version 3. Dostopano: 19.
7. 2025. url: https://www.gnu.org/licenses/gpl-3.0.html.

[3] WordPress.org. WordPress Features. Dostopano: 19. 7. 2025. url: https : / /
WordPress.org/about/features.

[4] W3Techs. Usage Statistics and Market Share of WordPress. Dostopano: 9. 9. 2025.
url: https://w3techs.com/technologies/details/cm-WordPress.

[5] WordPress.org. Server Requirements. Dostopano: 19. 7. 2025. url: https : / /
WordPress.org/about/requirements.

[6] WordPress.org. Roles and Capabilities. Dostopano: 19. 7. 2025. url: https : / /
WordPress.org/documentation/article/roles-and-capabilities.

[7] Ivana Boštjančič Pulko in sod. Priročnik kibernetske varnosti. Elektronska izdaja.
Ljubljana: Urad Vlade Republike Slovenije za informacijsko varnost, 2025. url:
https : / / www . gov . si / assets / vladne - sluzbe / URSIV / Datoteke / Prirocnik -
kibernetske-varnosti.pdf.

[8] Diah Aryani in sod. »Comparative Analysis Of On-Page And Off-Page White
Hat Search Engine Optimization (SEO) Techniques On Website Popularity«. V:
International Journal of Science, Technology and Management 4 (maj 2023),
str. 527–533. doi: 10.46729/ijstm.v4i3.815.

[9] Elementor. WordPress SEO Best Practices. 2023. url: https://elementor.com/
blog/wordpress-seo-best-practices/ (pridobljeno 18. 12. 2025).

https://codex.wordpress.org/FAQ_About_WordPress
https://codex.wordpress.org/FAQ_About_WordPress
https://www.gnu.org/licenses/gpl-3.0.html
https://WordPress.org/about/features
https://WordPress.org/about/features
https://w3techs.com/technologies/details/cm-WordPress
https://WordPress.org/about/requirements
https://WordPress.org/about/requirements
https://WordPress.org/documentation/article/roles-and-capabilities
https://WordPress.org/documentation/article/roles-and-capabilities
https://www.gov.si/assets/vladne-sluzbe/URSIV/Datoteke/Prirocnik-kibernetske-varnosti.pdf
https://www.gov.si/assets/vladne-sluzbe/URSIV/Datoteke/Prirocnik-kibernetske-varnosti.pdf
https://doi.org/10.46729/ijstm.v4i3.815
https://elementor.com/blog/wordpress-seo-best-practices/
https://elementor.com/blog/wordpress-seo-best-practices/

Literatura

[10] Google. SEO Starter Guide. 2024. url: https://developers.google.com/search/
docs/fundamentals/seo-starter-guide (pridobljeno 18. 12. 2025).

[11] Google. Lighthouse. 2024. url: https://developer.chrome.com/docs/lighthouse/
overview/ (pridobljeno 18. 12. 2025).

[12] WordPress.org. WordPress Files. Dostopano: 25. 7. 2025. url: https : / / codex .
wordpress.org/WordPress_Files.

[13] Karishma Sundaram. Beginner’s Guide to Understanding the Structure of a
WordPress Site. Dostopano: 25. 7. 2025. url: https://www.malcare.com/blog/
beginners-guide-to-understanding-the-structure-of-a-WordPress-site.

[14] WordPress.org. Database Description. Dostopano: 25. 7. 2025. url: https://codex.
wordpress.org/Database_Description.

[15] WordPress.org. Template Hierarchy. Dostopano: 25. 7. 2025. url: https : / /
developer.wordpress.org/themes/basics/template-hierarchy.

[16] Wordpress.org. Overview of WordPress Block Theme Terms and Hierarchy.
Dostopano: 11. 10. 2025. url: https : / / learn . wordpress . org / lesson / overview -
of-wordpress-block-theme-terms-and-hierarchy.

[17] WordPress.org. Theme Structure. Dostopano: 13. 10. 2025. url: https://developer.
wordpress.org/themes/core-concepts/theme-structure.

[18] WordPress.org. Global Settings and Styles. Dostopano: 13. 10. 2025. url: https :
//developer.wordpress.org/themes/core-concepts/global-settings-and-styles.

[19] cPanel, L.L.C. cPanel – The Hosting Platform of Choice. Dostopano: 25. 7. 2025.
url: https://www.cpanel.net.

[20] Behrouz Forouzan. TCP/IP: Protocol Suite. 1st. New Delhi, India: Tata McGraw-
Hill Publishing Company Limited, 2000.

[21] FileZilla Project. FileZilla – The free FTP solution. Dostopano: 25. 7. 2025. url:
https://filezilla-project.org.

[22] WordPress.org. SSH Access – Developer Tools. Dostopano: 25. 7. 2025. url: https:
//developer.WordPress.com/docs/developer-tools/ssh.

[23] WordPress.org. WP-CLI – Developer Tools. Dostopano: 25. 7. 2025. url: https:
//developer.WordPress.com/docs/developer-tools/wp-cli.

https://developers.google.com/search/docs/fundamentals/seo-starter-guide
https://developers.google.com/search/docs/fundamentals/seo-starter-guide
https://developer.chrome.com/docs/lighthouse/overview/
https://developer.chrome.com/docs/lighthouse/overview/
https://codex.wordpress.org/WordPress_Files
https://codex.wordpress.org/WordPress_Files
https://www.malcare.com/blog/beginners-guide-to-understanding-the-structure-of-a-WordPress-site
https://www.malcare.com/blog/beginners-guide-to-understanding-the-structure-of-a-WordPress-site
https://codex.wordpress.org/Database_Description
https://codex.wordpress.org/Database_Description
https://developer.wordpress.org/themes/basics/template-hierarchy
https://developer.wordpress.org/themes/basics/template-hierarchy
https://learn.wordpress.org/lesson/overview-of-wordpress-block-theme-terms-and-hierarchy
https://learn.wordpress.org/lesson/overview-of-wordpress-block-theme-terms-and-hierarchy
https://developer.wordpress.org/themes/core-concepts/theme-structure
https://developer.wordpress.org/themes/core-concepts/theme-structure
https://developer.wordpress.org/themes/core-concepts/global-settings-and-styles
https://developer.wordpress.org/themes/core-concepts/global-settings-and-styles
https://www.cpanel.net
https://filezilla-project.org
https://developer.WordPress.com/docs/developer-tools/ssh
https://developer.WordPress.com/docs/developer-tools/ssh
https://developer.WordPress.com/docs/developer-tools/wp-cli
https://developer.WordPress.com/docs/developer-tools/wp-cli

Literatura

[24] WordPress.org. Key Concepts – Block Editor Architecture. Dostopano: 21. 7. 2025.
url: https://developer.wordpress.org/block-editor/explanations/architecture/key-
concepts.

[25] WordPress.org. WordPress Roadmap. Dostopano: 21. 7. 2025. url: https : / /
WordPress.org/about/roadmap.

[26] WordPress.org. Plugins. Dostopano: 19. 7. 2025. url: https : //WordPress . org/
plugins.

[27] W3Techs. Usage of Elementor. Dostopano: 19. 7. 2025. url: https://w3techs.com/
technologies/details/cm-elementor.

[28] Elementor Ltd. Elementor Pricing Plans. Dostopano: 23. 7. 2025. url: https://
elementor.com/pricing-plugin.

[29] WordPress.org. WP-CLI Commands. Dostopano: 13. 10. 2025. url: https : / /
developer.wordpress.org/cli/commands.

[30] WordPress.org. WP-CLI – Scaffold Child Theme. Dostopano: 13. 10. 2025. url:
https://developer.wordpress.org/cli/commands/scaffold/child-theme.

[31] WordPress.org. register_post_type(). Dostopano: 25. 7. 2025. url: https : / /
developer.wordpress.org/reference/functions/register_post_type.

[32] WordPress.org. Introduction to Plugins. Dostopano: 25. 7. 2025. url: https : / /
WordPress.org/documentation/article/introduction-to-plugins.

[33] WordPress.org. Plugin Developer Handbook. Dostopano: 25. 7. 2025. url: https:
//developer.wordpress.org/plugins.

[34] WordPress.org. Settings API. Dostopano: 25. 7. 2025. url: https : / / developer .
wordpress.org/plugins/settings/settings-api.

[35] WordPress.org. Actions. Dostopano: 25. 7. 2025. url: https://developer.wordpress.
org/plugins/hooks/actions.

[36] WordPress.org. Filters. Dostopano: 25. 7. 2025. url: https://developer.wordpress.
org/plugins/hooks/filters.

[37] WordPress.org. Hooks. Dostopano: 25. 7. 2025. url: https://developer.wordpress.
org/plugins/hooks.

https://developer.wordpress.org/block-editor/explanations/architecture/key-concepts
https://developer.wordpress.org/block-editor/explanations/architecture/key-concepts
https://WordPress.org/about/roadmap
https://WordPress.org/about/roadmap
https://WordPress.org/plugins
https://WordPress.org/plugins
https://w3techs.com/technologies/details/cm-elementor
https://w3techs.com/technologies/details/cm-elementor
https://elementor.com/pricing-plugin
https://elementor.com/pricing-plugin
https://developer.wordpress.org/cli/commands
https://developer.wordpress.org/cli/commands
https://developer.wordpress.org/cli/commands/scaffold/child-theme
https://developer.wordpress.org/reference/functions/register_post_type
https://developer.wordpress.org/reference/functions/register_post_type
https://WordPress.org/documentation/article/introduction-to-plugins
https://WordPress.org/documentation/article/introduction-to-plugins
https://developer.wordpress.org/plugins
https://developer.wordpress.org/plugins
https://developer.wordpress.org/plugins/settings/settings-api
https://developer.wordpress.org/plugins/settings/settings-api
https://developer.wordpress.org/plugins/hooks/actions
https://developer.wordpress.org/plugins/hooks/actions
https://developer.wordpress.org/plugins/hooks/filters
https://developer.wordpress.org/plugins/hooks/filters
https://developer.wordpress.org/plugins/hooks
https://developer.wordpress.org/plugins/hooks

Literatura

[38] WordPress.org. Function Reference. Dostopano: 13. 10. 2025. url: https : / /
developer.wordpress.org/reference/functions.

[39] WordPress.org. WordPress Developer Resources. Dostopano: 25. 7. 2025. url: https:
//developer.wordpress.org.

[40] WordPress Developers. WP Query Class – More Information. Dostopano: 13. 10.
2025. 2025. url: https://developer.wordpress.org/reference/classes/wp_query/
#more-information.

[41] Search results for “WP_Theme”. Dostopano: 13. 10. 2025. WordPress.org —
Developer Resources. 2025. url: https://developer.wordpress.org/?s=WP_Theme.

[42] WordPress.org. Advanced Custom Fields – WordPress plugin. Dostopano: 25. 7.
2025. url: https://WordPress.org/plugins/advanced-custom-fields.

[43] WPEngine, Inc., Advanced Custom Fields. get_field(). Dostopano: 25. 7. 2025. url:
https://www.advancedcustomfields.com/resources/get_field.

[44] WordPress.org. Function Reference – register_taxonomy. Dostopano: 28. 7. 2025.
url: https://developer.wordpress.org/reference/functions/register_taxonomy.

[45] WooCommerce Documentation Team. Introduction to Hooks, Actions and Filters.
Dostopano: 25. 7. 2025. url: https://woocommerce.com/document/introduction-
to-hooks-actions-and-filters.

[46] WooCommerce Developers. WooCommerce Hook Reference. Dostopano: 25. 7. 2025.
url: https://woocommerce.github.io/code-reference/hooks/hooks.html.

[47] Rodolfo Melogli. WooCommerce Visual Hook Guide: Single Product Page.
Dostopano: 25. 7. 2025. url: https://www.businessbloomer.com/woocommerce-
visual-hook-guide-single-product-page.

[48] WordPress.org. REST API Reference – Media. Dostopano: 28. 7. 2025. url: https:
//developer.wordpress.org/rest-api/reference/media.

[49] WordPress.org. REST API Handbook – Global Parameters. Dostopano: 28. 7. 2025.
url: https : / / developer . wordpress . org / rest - api / using - the - rest - api / global -
parameters.

[50] WordPress.org. REST API Handbook – Pagination. Dostopano: 28. 7. 2025. url:
https://developer.wordpress.org/rest-api/using-the-rest-api/pagination.

https://developer.wordpress.org/reference/functions
https://developer.wordpress.org/reference/functions
https://developer.wordpress.org
https://developer.wordpress.org
https://developer.wordpress.org/reference/classes/wp_query/#more-information
https://developer.wordpress.org/reference/classes/wp_query/#more-information
https://developer.wordpress.org/?s=WP_Theme
https://WordPress.org/plugins/advanced-custom-fields
https://www.advancedcustomfields.com/resources/get_field
https://developer.wordpress.org/reference/functions/register_taxonomy
https://woocommerce.com/document/introduction-to-hooks-actions-and-filters
https://woocommerce.com/document/introduction-to-hooks-actions-and-filters
https://woocommerce.github.io/code-reference/hooks/hooks.html
https://www.businessbloomer.com/woocommerce-visual-hook-guide-single-product-page
https://www.businessbloomer.com/woocommerce-visual-hook-guide-single-product-page
https://developer.wordpress.org/rest-api/reference/media
https://developer.wordpress.org/rest-api/reference/media
https://developer.wordpress.org/rest-api/using-the-rest-api/global-parameters
https://developer.wordpress.org/rest-api/using-the-rest-api/global-parameters
https://developer.wordpress.org/rest-api/using-the-rest-api/pagination

Literatura

[51] WordPress.org. Common APIs Handbook – Nonces. Dostopano: 28. 7. 2025. url:
https://developer.wordpress.org/apis/security/nonces.

[52] WordPress.org. REST API Handbook – Authentication. Dostopano: 28. 7. 2025.
url: https://developer.wordpress.org/rest-api/using-the-rest-api/authentication.

[53] OAuth Core Workgroup. OAuth Core 1.0 Revision A. Dostopano: 28. 7. 2025. url:
https://oauth.net/core/1.0a.

[54] OAuth Core Workgroup. Auth0 documentation – JSON Web Tokens. Dostopano:
28. 7. 2025. url: https://auth0.com/docs/secure/tokens/json-web-tokens.

[55] WordPress.org. Themes. Dostopano: 19. 7. 2025. url: https ://WordPress .org/
themes.

[56] WordPress.org. REST API Handbook. Dostopano: 28. 7. 2025. url: https : / /
developer.wordpress.org/rest-api.

[57] NEOSERV. WordPress “child” tema: zakaj in kako jo ustvariti? Dostopano: 6. 9.
2025. url: https://www.neoserv.si/blog/wordpress-child-tema.

[58] WordPress Contributors. Plugin Handbook. Dostopano: 13. 10. 2025. WordPress.org.
2025. url: https://developer.wordpress.org/plugins/.

https://developer.wordpress.org/apis/security/nonces
https://developer.wordpress.org/rest-api/using-the-rest-api/authentication
https://oauth.net/core/1.0a
https://auth0.com/docs/secure/tokens/json-web-tokens
https://WordPress.org/themes
https://WordPress.org/themes
https://developer.wordpress.org/rest-api
https://developer.wordpress.org/rest-api
https://www.neoserv.si/blog/wordpress-child-tema
https://developer.wordpress.org/plugins/

Stvarno kazalo

akcija, 67, 83

blokovni urejevalnik, 18
brezglavi sistem, 103

CLI, 66
cPanel, 15, 44

datoteka
.htaccess, 31, 33
functions.php, 64, 65, 67, 90
index.php, 31, 34, 40, 55
public_html, 15
single.php, 39
theme.json, 41, 53, 54
wp-config, 16
wp-config.php, 31

DirectAdmin, 15
direktorij, 32, 64, 66

wp-admin, 31, 33
wp-config, 33
wp-content, 10, 12, 31, 33
wp-includes, 31, 33

Docker, 6, 11, 14
Docker Desktop, 13
Docker Engine, 11, 13
dogodek, 83, 90, 98

domača stran, 37

FileZilla, 15, 46
filter, 84
FTP/SFTP, 15, 43, 46
funckija, 92
funkcija, 85, 90

gradnik, 66
GraphQL, 103

Headless Content Management System, 103
hierarhija, 35, 37, 40
HTTPS, 15, 109

JSON Web Tokens, 109

kategorija, 19
komentarji, 35, 67, 91
kratka koda, 67, 76

Local, 6, 7

nadzorna plošča, 17, 42, 72
nastavitve, 25, 30, 37
predstavnost, 20
vtičniki, 22, 79

OAuth, 109
oznaka, 19

Stvarno kazalo

PHP, 3, 7, 9, 12, 66
phpMyAdmin, 12
Plesk, 15, 44
podatkovna zbirka

Apache, 7, 12
DBeaver, 11
HeidiSQL, 11
LAMP, 5
MAMP, 5
MariaDB, 7, 9
MySQL, 7, 9, 12, 34
MySQL Workbench, 11
Nginx, 7
phpMyAdmin, 11
preglednice, 35
WAMP, 5
XAMP, 5

predloga, 37, 40
predpomnjenje, 29
prispevek, 97

razred, 86, 89, 90

SEO, 27, 29
Google Lighthouse, 29
notranje metrike, 27
zunanje metrike, 28

SSH, 47
SSL certifikat, 15, 16
stran, 19

taksonomija, 19, 67, 91, 97, 105
lastna, 96, 97

tema, 10, 21, 42, 49, 57, 69, 92
blokovna, 21, 50
Gutenberg, 50, 52, 53
izbira teme, 50

klasična, 21, 35, 55
podtema, 63–66
vtičniki za vizualno izdelavo, 56, 57

tip objave
novica, 19
prispevek, 19, 67, 90
stran, 19

tip prispevka, 39, 67
lasten, 67, 68, 90–92, 96, 97

uporabniki, 23, 91
vloge, 24

videz, 21
vtičnik, 10, 22, 42, 49, 67, 71, 98

Advanced Custom Fields, 91
Aksimet Anti-Spam, 74
Child Theme Configurator, 63
Child Theme Generator, 63
Contact Form 7, 74, 75
Elementor, 57, 61, 74
izbira, 72
Jetpack, 74
lasten, 78, 80
LiteSpeed Cache, 74
UpdraftPlus, 74
WooCommerce, 74, 100
Wordfence Security, 74
WPForms Lite, 74
Yoast SEO, 74

WordPress, IX, 1
datotečna struktura, 31, 32, 34, 42
funckionalnosti, 68
funkcionalnosti, 66, 75, 85
končne točke, 104
REST API, 103, 106

122

Stvarno kazalo

slog, 53, 60, 63, 69, 84
WordPress.com, 1
WordPress.org, 1

WordPress Developer Resources, 85, 101
WP Admin, 10

WP Query, 88

WP-CLI, 47

WP_Query, 87

zanka, 87

123

Uvod v WordPress

DOI
https://doi.org/

10.18690/um.feri.3.2026

ISBN
978-961-299-106-7

Saša Brdnik, Tjaša Heričko, Špela Čučko,
Sašo Karakatič

Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko, Maribor, Slovenija
sasa.brdnik@um.si, tjasa.hericko@um.si, spela.cucko@um.si, saso.karakatic@um.si

Učbenik celovito in sistematično predstavlja sodoben sistem za upravljanje
vsebin WordPress, namenjen študentom, učiteljem in začetnikom v
razvoju spletnih mest. Obravnava temeljne koncepte delovanja
WordPressa, od lokalne namestitve in osnovnih nastavitev do upravljanja
vsebin, uporabnikov in medijev. Poseben poudarek je namenjen temam,
vtičnikom in prilagajanju funkcionalnosti, vključno z osnovami razvoja
lastnih vtičnikov, tipov vsebin in taksonomij. Učbenik se dotakne tudi
optimizacije za iskalnike ter dobrih praks pri vzdrževanju spletnih mest.
Vsebina je podprta s številnimi praktičnimi primeri, posnetki zaslona in
razlagami, ki omogočajo postopno razumevanje snovi. Učbenik bralca vodi
od osnov do naprednejših konceptov ter omogoča samostojno izdelavo in
upravljanje profesionalnega WordPress spletnega mesta. Namenjen je tako
pedagoški rabi kot tudi praktični uporabi v realnih projektih.

 Ključne besede:
WordPress,

sistem za upravljanje
vsebin,

praktični primeri,
CMS,

učbenik

DOI
https://doi.org/
10.18690/um.feri.1.2026

ISBN
978-961-299-106-7

Introduction to WordPress

 Saša Brdnik, Tjaša Heričko, Špela Čučko,
Sašo Karakatič

 University of Maribor, Faculty of Electrical Engineering and Computer Science, Maribor, Slovenia
sasa.brdnik@um.si, tjasa.hericko@um.si, spela.cucko@um.si, saso.karakatic@um.si

Keywords:
WordPress,
content management
system,
pracrtical exmaples,
CMS,
textbook

 The textbook provides a comprehensive and systematic introduction to the
modern WordPress content management system, aimed at students,
teachers, and beginners in website development. It covers the basic
concepts of WordPress, from local installation and basic settings to content,
user, and media management. Special emphasis is placed on themes,
plugins, and customizing functionality, including the basics of developing
your own plugins, content types, and taxonomies. The textbook also
touches on search engine optimization and best practices for website
maintenance. The content is supported by numerous practical examples,
screenshots, and explanations that enable a gradual understanding of the
material. The textbook guides the reader from the basics to more advanced
concepts and enables the independent creation and management of a
professional WordPress website. It is intended for both educational use and
practical application in real projects.

	Kazalo slik
	Predgovor
	Uvod
	Kaj je WordPress?
	Namestitev sistema WordPress
	Lokalno razvojno okolje s sistemom WordPress
	Vzpostavitev lokalnega razvojnega okolja z orodjem Local
	Vzpostavitev lokalnega razvojnega okolja z vsebniki Docker

	Namestitev sistema WordPress pri ponudniku gostovanja

	Osnovno delo s sistemom WordPress
	Strani
	Prispevki
	Medijske vsebine
	Videz
	Vtičniki
	Uporabniki
	Nastavitve

	Priprava in prilagoditev spletnih vsebin za objavo
	Notranji in zunanji dejavniki ter metrike optimizacije vsebin za iskalnike
	Dobre prakse optimizacije vsebin za iskalnike
	Analiza optimizacije za iskalnike

	Datotečna struktura v sistemu WordPress
	Ključni direktoriji in datoteke
	Shema podatkovne zbirke
	Hierarhija predlog klasičnih tem
	Predloge domače strani
	Predloge prispevka

	Hierarhija predlog blokovnih tem
	Dostop do datotečnega sistema WordPress in podatkovne zbirke
	Dostop prek nadzorne plošče WordPress
	Dostop prek nadzorne plošče cPanel
	Dostop prek protokola FTP/SFTP
	Dostop z ukazno vrstico in protokolom SSH

	Teme in vizualno urejanje
	Izbira teme
	Urejevalnik Gutenberg in blokovne teme
	Klasične teme
	Vtičniki za vizualno izdelavo strani
	Elementor
	Razširitve vtičnika Elementor

	Podteme
	Ustvarjanje podteme s pomočjo vtičnika
	Ročno ustvarjanje podteme
	Ustvarjanje podteme z ukazno vrstico
	Prilagoditev predlog in dodajanje funkcionalnosti v podtemi

	Vtičniki
	Izbira vtičnikov
	Pregled najpogosteje uporabljenih vtičnikov

	Uporaba vtičnikov
	Razvoj lastnega vtičnika
	Upravljanje vtičnika preko nadzorne plošče WordPress

	Dogodki, funkcije in razredi Wordpress
	Akcije in filtri
	Funkcije
	Razredi
	Praktični primeri uporabe dogodkov, funkcij in razredov
	Registracija lastnega tipa prispevka in definiranje polj po meri
	Registracija lastne taksonomije
	Uporaba dogodkov za posege v delovanje vtičnikov

	WordPress vsebine za razvijalce

	WordPress kot brezglavi sistem za upravljanje vsebin
	Dostop do podatkov s programskeim vmesnikom WordPress REST API
	Privzete končne točke
	Globalni parametri, paginacija in razvrščanje
	Avtentikacija in dovoljenja
	Praktični primer uporabe podatkov na ločenem obličju

	Zaključek

	Literatura
	Stvarno kazalo

