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Logistical, production, transportation, and all related issues in the
industry follow similar processes, with time being the crucial
factor. While some processes can be relatively easily analysed due
to their simplicity, the more interconnected the processes are, the
more challenging it becomes to describe them accurately using
traditional analytical approaches. Simulations, in this regard,
provide a deeper insight into the flow of such processes. They
enable the analysis of efficiency, shortcomings, and, most
importantly, allow for the examination of existing systems under
different conditions without interfering with their operation.
Besides having a good understanding of the processes, data
support is crucial for simulation. This support can involve the
recording of historical data and predicting future events with
possible alternative scenarios. By enabling real-time data logging
during process execution and providing the data to an active
simulation that processes it in real-time, a digital twin can be
created. Within the scope of this subject, participants familiarize
themselves with server systems, queuing systems, discrete event
simulations, and the tools that support them, along with examples
of their application in manufacturing, logistics, and transportation

scenarios.
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1 Introduction

With simulations, we try to map real-world events into a mathematical or computer
model, with which we can repeat these events, change them, and observe how they
behave under different conditions. Most areas of the business world can be analyzed
with simulations, such as material flows in production plants or warchouses,
simulations of transport flows, information or financial flows. Simulations are
therefore used not only for the analysis of such systems, but also for optimization -
especially when systems are too computationally complex to be optimized in a timely

manner using classical optimization methods.

Depending on the type of problems we are solving and the purpose of optimization,

there are several different simulation approaches:

— 3D/real-time simulations (e.g. pilot training simulations),
—  system dynamics (simulations of complex, comprehensive systems),
— agent simulation (observing people, entities interacting in space and time),

— discrete event simulation.

The latter approach is at the forefront of this work. Discrete event simulations allow
for the description of any systems where individual events influence the further
behavior of the events. The method itself is fundamentally simple. The entire system
is designed with states that are changed only by events at predetermined times.
Unlike continuous simulations, the state is always unchanged between individual
events, regardless of the elapsed time. Events can be defined in advance (e.g.,

expected customer arrivals), or they can generate new events themselves.
2 Process modeling and simulation

Regardless of the field, all processes include a time component. Thus, based on
behavior, we observe what is happening in a particular system and how long
something takes. Here we can consider input flows, such as customer arrivals to the
store, duration of purchase, waiting in front of the cash register. This example can
be mapped to many others, where we talk about inputs, processing and finally output

from the system.
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21 Server Systems and Queues

A basic example (Figure 5.1) of a server system (Thomopoulos, 2012) includes a
queue in which entities wait for processing and a server that processes these tasks,
and the operation of the system depends on the servet's processing capacity, the
intensity of task arrivals and the capacity of the queue. Depending on the nature of
the simulation, entities can represent tasks, packages, customers, information,

workpieces or practically any element that affects the events within the simulation.

Server
Queue _ Queuing : .
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Figure 5.1: Basic server system with queue

Source: own.

The arrival rate determines how often entities arrive in the queue. In general, the

arrival rate can be given as:
N
A== 1
" 0

where A is the intensity, N the number of atrivals and T the time interval of arrivals.

According to the process, each entity is placed in a queue from which it is forwarded
to the server, if it is available. In the case of multiple waiting entities, the selection

of the next one to be forwarded can be done using different approaches:

— FIFO (First-in, First-out) approach, where each task is submitted to the server
in the order in which it arrives.

— LIFO (Last-in, Fast-out) approach, where the last task to enter the queue is
submitted to the server first.

—  Priority queues allow for priority treatment to be set for certain tasks or groups
of tasks. Thus, entities with higher priorities are submitted to the server before

those with lower ones.
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— Random approach determines a random entity in the queue.

Depending on the intensity of arrivals and the availability of the server, the entities
in the queue can accumulate, decrease or wait in the queue for an average uniform
amount of time. In system modeling, the latter variant is usually sought, as it allows

for stable systems.

In addition to the intensity of arrivals, a key factor is also the service rate p, which is
given by the number of entities that the server can process per unit of time. The
service rate is thus given as the reciprocal of the service time.

1
H=73

@
S represents the service time. Like arrivals, service time can also be subject to

randomness. Thus, we distinguish service speeds into:

— deterministic,

— stochastic.

In some cases, the service time is constant and known in advance, while in others it
depends on factors and is random. The modeling of service times is usually
appropriate for exponential or normal distributions, depending on the type of

process.

The presented model (Figure 5.2) allows for the simulation of a very basic process
with one queue and one server. However, imitating real-world cases requires the
construction of more complex networks, where each building block can have
multiple inputs and outputs. Depending on the complexity of the case we want to
model, complex models can be created where the flow is influenced not only by the
connections between the building blocks, but also by the rules for sorting by
individual, conditionally determined arrivals and by the serving rules. It is therefore

sensible to model and simulate such cases in appropriate dedicated tools.
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Figure 5.2: Server system with multiple servers

Source: own.

Kendall's notation is used to desctibe the main characteristics of queueing systems

(Bolch et al., 2006). The basic notation is in the following form:

A/B/c/K/m/Q ©)
where represents:

A — arrival time distribution,
B — service time distribution,
¢ — number of servers,

K — queue capacity,

m — population size,

Q — service strategy.
The values thus taken by components A and B are:

— M — exponential distribution,
— D — deterministic distribution,
- E — Erlang distribution,

— G — general distribution.
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The number of servers ¢ p specifies how many servers can be used to perform
parallel services.

Capacity K determines the maximum number of clients in the system, both in the
queues and on the server, while m represents the expected number of clients. The
previously mentioned server strategies (FIFO, LIFO) determine how entities are

delivered from the queues.
2.2 Discrete event simulation

While queueing systems are primarily an abstract representation, a more advanced
approach is needed to model more complex systems. Discrete event simulations
(Fishman, 2002) are one of the most widely used approaches, alongside e.g. system
dynamics or agent simulation. They are commonly used in simulating problems in
manufacturing, healthcare, transportation and logistics, energy systems, supply

chains, and related fields.

Queuing systems assume a straightforward flow between arrivals and processing. In
discrete event modeling, in addition to the entities, queues, and servers themselves,
characteristics, rules, resources, and events are also considered. As part of the
simulation, a list of all events and their expected time are built based on the model.
An event represents any change in the system, such as a customer entering a queue,
the start or end of processing a product on a machine, or a change in the properties

of an entity. Each event changes the state of the simulated system.

The simulation is performed in simulation time, which does not run in real time, but
discretely skips the times between individual events. Individual events can also create
new events, which are also placed in the list of future events, which can cause some

already planned events to be postponed.

During the simulation itself, statistics on queues, server utilization, throughput and
other parameters are recorded, which can be used to provide an appropriate analysis

of simulated systems.
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Two more key elements in the implementation of simulations are verification and
validation. Verification checks the correctness of individual implemented
functionalities, calculation formulas, logic. Validation checks how well the model
imitates the real system. For this purpose, the simulation results are compared with
the expected behavior of the real system, which is obtained from measurements or
expert assessment. Verification and validation are repetitive processes that lead to
greater accuracy and reliability of the created model. Sensitivity analysis can also be

used to assess areas of uncertainty.
2.3 Modeling simulation parameters

The methods of modeling the input parameters of the simulation depend on the
type of simulated system and the available data. In this, a good understanding of the
processes based on which it is possible to model the material flow is required in the
first phase. Thus, it is necessary to identify all the factors (processes ot parameters)
that can affect the behavior of the system, such as:

Entities and their properties — what are the key elements of the simulation, how can
their properties affect the material flow (entities with different properties have
different flows through the network, for example).

Simulation objects — any building blocks of the simulation tool that affect the state
of the system — sources, sinks, servers or processors, queues, objects for combining

or uncombining entities, objects for changing entity properties, event generators.

Material flow — connections between all objects from or to which entities can move.
In this case, it is necessary to carefully determine the conditions for redirection from

individual objects to successors.

Input intensities — the example given at the beginning of the chapter is just one of
the options for modeling inputs. When modeling inputs from real systems, we can

use:

—  Deterministic values — in systems where quantities and times are well-defined

(e.g. train schedules, meeting schedules, etc.).
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— Dynamic arrivals — input loads can depend on various factors such as the
number of vehicles during rush hour.

— Titting to statistical distributions — when we have appropriate data available,
input loads can be modeled by fitting to statistical distributions.

— Historical data — where we have records of events in the systems (e.g. MES
systems), we can perform an analysis by fitting to statistical distributions.

— Expert estimates — in the absence of records, the assessment of the behavior of
individual building blocks can be estimated based on the empirical assessments
of experts.

— Random values — randomness is a key element of simulations. In arrival
modeling, random values are used within appropriate ranges or random values
are generated according to appropriate distributions.

—  Sensitivity analysis - input parameters can be varied to assess how the system
behaves under different initial settings under certain assumptions.

— Service speeds — obtaining service speeds is like input intensities. It is often
possible to obtain service speeds from knowledge of process durations such as

production machine specifications, transport speeds, etc.

Regardless of which approach is used, it is necessary to carefully examine all selected

parameters (model validation) depending on the modeled system.
2.4 Random values

The generation of random values is one of the fundamental concepts in simulations,
which is why we dedicate a chapter to it. Generating a random number (L’Ecuyer,
2007) is a mathematically simple operation, but if approached incorrectly, it can lead
to the appearance of patterns. The appearance of patterns in the generation of
random numbers can lead to inappropriate behavior of the simulation, as unwanted
dependencies may appear in the simulation flow, which would otherwise not be

expected in a real system.

Computer systems for generating random values use pseudo-random number
generators, where the calculation of the random value is performed by a function
with an input variable. An example of a simple linear congruence generator is given

by the formula:
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Xns1 = (@Xy + O)%m @
Here they represent:

Xy~ generator seed,
a — multiplier — determines the period and quality of randomness,
¢ — increment — sequence shift for greater variety of generated numbers,

m — divisor — determines the range of generated numbers.

The properties of the sequence of random numbers generated by such a generator
depend on the choice of given parameters. The purpose of generators is to create as
much entropy or unpredictability of states as possible, so the choice of seed is also
important. When using the same seed, the function will always generate the same
sequence of pseudo-random values. Depending on the needs, this may be desirable,
such as when implementing different configurations with the same initial inputs or
for verification. In most cases, however, it is desirable to disperse the random values
as much as possible. In such cases, it makes sense to choose the generator seed as
randomly as possible, for example from the current processor time when generating
the random value. A linear congruence generator generates integers on the interval
[0,m — 1], but often the generation of real numbers on the interval [0,1], is desired,
mainly for the purpose of normalizing the values. For this purpose, the new number
is divided by m.

In modeling most real-world problems, the intensity of arrivals occurs randomly,
but this randomness can usually be limited. The intensity of arrivals is thus often
modeled by distributions where the arrivals are independent and follow each other
at equal intervals on average. Modeling of real-world random processes is often done

using the Poisson distribution:

PX=k)= @ )

where (P(X = k) is the probability of occutrence of k events, A is the average
intensity of atrivals in the time interval, and k is the number of events for which we
want to find the probability. The Poisson distribution is useful in describing events

such as:
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— modeling customer arrivals to a store over a certain period of time,
— analysis of the number of production defects,
— forecasting the number of accidents on a section within a time period,

— arrivals of e-mail messages.

Modeling of input flows or service speeds is performed by fitting to statistical
distributions (Johnson, 1987), such as Poisson or normal. These can be determined
using statistical tests, histogram shape estimation, least squares, and other
approaches. Once the process distributions are known, they can be used to generate
random events that follow the same statistical characteristics as the systems under

study.

An example of calculating randomly generated values according to a Poisson

distribution with mean A is shown in the following procedure:

function Poisson(A)

L=e¢*

k<0

pe<1

while (p > L) do
k<k+1

p = p *rand()
end

Poisson = k

Pseudocode 1: Poisson random value generator
3 Simulation example

For a simulation example, let's take a store where customers enter, search for
products for different lengths of time, and finally purchase them at the checkout.
Let's define the system propetties:

— 5 customers enter on average per minute,
— number of cashiers: 5,

— average purchase duration: 15 min,
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— the transaction at the checkout takes an average of 5 minutes.
According to Kendall's notation, a basic server system could be desctibed by:
M/M/5/30/3000/FIFO (0)

assuming exponential customer arrivals and service, 5 cash registers, an estimated
store capacity of 30 customers, and a total number of customers rounded to 3000
(estimated for one business day). We choose FIFO as the serving strategy, meaning

that customers are served according to their arrival (and purchase) time.

The input parameter here represents the average arrival time between two
consecutive customers. Assuming that customer arrivals are a Poisson process, we

can model random arrival times as follows:

-1 d
= Tt )

Table 1: Example of randomly determined arrivals according to an exponential distribution

Random time [s] Next arrival [s]
1 0,010422473 0,625348364
2 0,44356782 27,23941755
3 0,047033142 30,06140609
4 0,561568412 63,7555108
) 0,416494108 88,74515728
6 0,083158277 93,73465391
7 0,023527478 95,14630261
8 0,052567808 98,30037111
9 0,130142537 106,1089233
0,055501926 109,4390389
0,010422473 144,9275279
0,44356782 152,8945772

Source: own

The given simulation example can be analyzed with server systems with queues, but
the complexity increases with each added element. Therefore, it is advisable to use
appropriate simulation tools for such problems. Simulation tools cannot be expected
to produce simulation results that are completely consistent with theoretical
calculations due to rounding errors and randomness, but with a well-designed

simulation model, the results should come close to theoretical calculations.
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From the given simulation example, we can quickly see that the system is not
sustainable; with an average number of 5 customers per minute and 5 cash registers
with a service speed of 5 minutes. The shopping time here represents an example
that customers perform simultaneously. If we were to use Kendall's notation to

describe only this part, we could describe it as a process, which can be simplified as:
M/M /oo ®)

because when shopping, each customer makes their own purchase and does not
even need to enter the queue. Therefore, this segment can be considered unlimited
(each customer has their own immediately available server). Customer arrivals
represent arrivals as generated, and for the service speed, we consider an average of
15 minutes per customer according to the given parameters. After making a
purchase, customers enter the queue (or queues in front of individual cash registers).
In a concrete simulation, we should of course take into account various factors, such

as working hours, breaks and snacks, loads at different times during the day, etc.

The presented example can be modeled in simulation tools (Figure 5.3) and avoids
the multitude of calculations involved in increasing the complexity of server systems

with queues.
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Figure 5.3: Trade simulation model in FlexSim

Source: own.
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Since the given example is unstable (constantly growing queue and constant
occupancy of the cash registers), let's check how we could change the system to be
sustainable. We can mainly use two approaches. We can add additional cash registers
or replace them with faster ones. For this scenario, we leave all settings and
characteristics the same, only we speed up the cash registers by a factor of 5 (still

according to an exponential distribution).

The goal of each simulation is to determine the capabilities of the modeled system,
which includes various characteristics. In this case, we focus on the size of the queue
(Figure 2.4) and the waiting times in it (Figure 2.5) and the utilization of the cash
registers (Figure 2.0).

. Queue Shoppers . Waiting times
100 -
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Figure 2.4: Queue length Figure 2.5: Waiting times in the queue
Source: own. Source: own.
. Processing Idle

Cashier1 91.81%
Cashier2 90.21%
Cashier3 89.93%
Cashier 4 8833%
Cashier 5 87.06 %
Shopping 99.87 %
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Figure 2.6: Cash register utilization

Source: own.

The simulation results show a (relatively) stable system with changed characteristics,
as we do not have constantly increasing queues and waiting times. In simulations of
complex systems, it is often necessary to find solutions that avoid bottlenecks and

unused resources.
7 Conclusion
The presented example shows only a fraction of the capabilities that simulations

offer. The great usefulness of simulations is especially evident in the study of

complex systems, where seemingly unrelated parameters are involved. Thus
p Yy > gly p >
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simulations are used in logistics, finance, information, production, or in fact any
related field. In the field of logistics, simulations represent a cost-effective approach
to the analysis of production processes, transport routes and routing, traffic patterns,
etc. By changing the parameters of the simulation or simulation scenarios, it is
possible to observe complex systems from different perspectives, which enables

effective decision-making based on rational analyses.

Performing simulations allows a cost-effective approach to the analysis of complex
systems without the need to interrupt processes. In today's technological systems,
there is an increasing integration of various solutions, from ERP, MES, PLC,
SCADA systems and others. While such systems mainly record and can also largely
manage processes, simulation represents an alternative option for optimization by
comparing alternatives and supporting decision-making. Recently, digital twins have
come to the fore, providing a comprehensive insight into various company
processes. Digital twins capture the events of a company's processes in real time
from sensors, machines, devices and other sources (Internet of Things) and build a
virtual representation based on them. Simulations performed on a virtual image of a
real system provide a deeper insight into operations and business and represent

added value in business decision-making at all levels.
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