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Logistical, production, transportation, and all related issues in the 
industry follow similar processes, with time being the crucial 
factor. While some processes can be relatively easily analysed due 
to their simplicity, the more interconnected the processes are, the 
more challenging it becomes to describe them accurately using 
traditional analytical approaches. Simulations, in this regard, 
provide a deeper insight into the flow of such processes. They 
enable the analysis of efficiency, shortcomings, and, most 
importantly, allow for the examination of existing systems under 
different conditions without interfering with their operation. 
Besides having a good understanding of the processes, data 
support is crucial for simulation. This support can involve the 
recording of historical data and predicting future events with 
possible alternative scenarios. By enabling real-time data logging 
during process execution and providing the data to an active 
simulation that processes it in real-time, a digital twin can be 
created. Within the scope of this subject, participants familiarize 
themselves with server systems, queuing systems, discrete event 
simulations, and the tools that support them, along with examples 
of their application in manufacturing, logistics, and transportation 
scenarios. 
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1 Introduction 
 
With simulations, we try to map real-world events into a mathematical or computer 
model, with which we can repeat these events, change them, and observe how they 
behave under different conditions. Most areas of the business world can be analyzed 
with simulations, such as material flows in production plants or warehouses, 
simulations of transport flows, information or financial flows. Simulations are 
therefore used not only for the analysis of such systems, but also for optimization - 
especially when systems are too computationally complex to be optimized in a timely 
manner using classical optimization methods. 
 
Depending on the type of problems we are solving and the purpose of optimization, 
there are several different simulation approaches: 
 
− 3D/real-time simulations (e.g. pilot training simulations), 
− system dynamics (simulations of complex, comprehensive systems), 
− agent simulation (observing people, entities interacting in space and time), 
− discrete event simulation.  
 
The latter approach is at the forefront of this work. Discrete event simulations allow 
for the description of any systems where individual events influence the further 
behavior of the events. The method itself is fundamentally simple. The entire system 
is designed with states that are changed only by events at predetermined times. 
Unlike continuous simulations, the state is always unchanged between individual 
events, regardless of the elapsed time. Events can be defined in advance (e.g., 
expected customer arrivals), or they can generate new events themselves. 
 
2 Process modeling and simulation 
 
Regardless of the field, all processes include a time component. Thus, based on 
behavior, we observe what is happening in a particular system and how long 
something takes. Here we can consider input flows, such as customer arrivals to the 
store, duration of purchase, waiting in front of the cash register. This example can 
be mapped to many others, where we talk about inputs, processing and finally output 
from the system.  
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2.1 Server Systems and Queues 
 
A basic example (Figure 5.1) of a server system (Thomopoulos, 2012) includes a 
queue in which entities wait for processing and a server that processes these tasks, 
and the operation of the system depends on the server's processing capacity, the 
intensity of task arrivals and the capacity of the queue. Depending on the nature of 
the simulation, entities can represent tasks, packages, customers, information, 
workpieces or practically any element that affects the events within the simulation. 
 

 
 

Figure 5.1: Basic server system with queue 
Source: own. 

 
The arrival rate determines how often entities arrive in the queue. In general, the 
arrival rate can be given as: 
 

𝜆𝜆 = 𝑁𝑁
𝑇𝑇

                            (1) 

 
where 𝜆𝜆 is the intensity, 𝑁𝑁 the number of arrivals and 𝑇𝑇 the time interval of arrivals. 
 
According to the process, each entity is placed in a queue from which it is forwarded 
to the server, if it is available. In the case of multiple waiting entities, the selection 
of the next one to be forwarded can be done using different approaches: 
 
− FIFO (First-in, First-out) approach, where each task is submitted to the server 

in the order in which it arrives.  
− LIFO (Last-in, Fast-out) approach, where the last task to enter the queue is 

submitted to the server first. 
− Priority queues allow for priority treatment to be set for certain tasks or groups 

of tasks. Thus, entities with higher priorities are submitted to the server before 
those with lower ones. 
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− Random approach determines a random entity in the queue. 
 
Depending on the intensity of arrivals and the availability of the server, the entities 
in the queue can accumulate, decrease or wait in the queue for an average uniform 
amount of time. In system modeling, the latter variant is usually sought, as it allows 
for stable systems. 
 
In addition to the intensity of arrivals, a key factor is also the service rate μ, which is 
given by the number of entities that the server can process per unit of time. The 
service rate is thus given as the reciprocal of the service time. 
 

𝜇𝜇 = 1
𝑆𝑆
                            (2) 

 
𝑆𝑆 represents the service time. Like arrivals, service time can also be subject to 
randomness. Thus, we distinguish service speeds into: 
 
− deterministic, 
− stochastic. 
 
In some cases, the service time is constant and known in advance, while in others it 
depends on factors and is random. The modeling of service times is usually 
appropriate for exponential or normal distributions, depending on the type of 
process. 
 
The presented model (Figure 5.2) allows for the simulation of a very basic process 
with one queue and one server. However, imitating real-world cases requires the 
construction of more complex networks, where each building block can have 
multiple inputs and outputs. Depending on the complexity of the case we want to 
model, complex models can be created where the flow is influenced not only by the 
connections between the building blocks, but also by the rules for sorting by 
individual, conditionally determined arrivals and by the serving rules. It is therefore 
sensible to model and simulate such cases in appropriate dedicated tools. 
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Figure 5.2: Server system with multiple servers 
Source: own. 

 
Kendall's notation is used to describe the main characteristics of queueing systems 
(Bolch et al., 2006). The basic notation is in the following form: 
 

𝐴𝐴/𝐵𝐵/𝑐𝑐/𝐾𝐾/𝑚𝑚/𝑄𝑄                           (3) 
 
where represents: 
 
𝐴𝐴 – arrival time distribution, 
𝐵𝐵 – service time distribution, 
𝑐𝑐 – number of servers,  
𝐾𝐾 – queue capacity,  
m – population size, 
Q – service strategy. 
 
The values thus taken by components A and B are: 
 
− M – exponential distribution, 
− D – deterministic distribution, 
− E – Erlang distribution, 
− G – general distribution. 
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The number of servers 𝑐𝑐 p specifies how many servers can be used to perform 
parallel services. 
 
Capacity 𝐾𝐾 determines the maximum number of clients in the system, both in the 
queues and on the server, while m represents the expected number of clients. The 
previously mentioned server strategies (FIFO, LIFO) determine how entities are 
delivered from the queues.  
 
2.2 Discrete event simulation 
 
While queueing systems are primarily an abstract representation, a more advanced 
approach is needed to model more complex systems. Discrete event simulations 
(Fishman, 2002) are one of the most widely used approaches, alongside e.g. system 
dynamics or agent simulation. They are commonly used in simulating problems in 
manufacturing, healthcare, transportation and logistics, energy systems, supply 
chains, and related fields. 
 
Queuing systems assume a straightforward flow between arrivals and processing. In 
discrete event modeling, in addition to the entities, queues, and servers themselves, 
characteristics, rules, resources, and events are also considered. As part of the 
simulation, a list of all events and their expected time are built based on the model. 
An event represents any change in the system, such as a customer entering a queue, 
the start or end of processing a product on a machine, or a change in the properties 
of an entity. Each event changes the state of the simulated system. 
 
The simulation is performed in simulation time, which does not run in real time, but 
discretely skips the times between individual events. Individual events can also create 
new events, which are also placed in the list of future events, which can cause some 
already planned events to be postponed. 
 
During the simulation itself, statistics on queues, server utilization, throughput and 
other parameters are recorded, which can be used to provide an appropriate analysis 
of simulated systems. 
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Two more key elements in the implementation of simulations are verification and 
validation. Verification checks the correctness of individual implemented 
functionalities, calculation formulas, logic. Validation checks how well the model 
imitates the real system. For this purpose, the simulation results are compared with 
the expected behavior of the real system, which is obtained from measurements or 
expert assessment. Verification and validation are repetitive processes that lead to 
greater accuracy and reliability of the created model. Sensitivity analysis can also be 
used to assess areas of uncertainty. 
 
2.3 Modeling simulation parameters 
 
The methods of modeling the input parameters of the simulation depend on the 
type of simulated system and the available data. In this, a good understanding of the 
processes based on which it is possible to model the material flow is required in the 
first phase. Thus, it is necessary to identify all the factors (processes or parameters) 
that can affect the behavior of the system, such as: 
 
Entities and their properties – what are the key elements of the simulation, how can 
their properties affect the material flow (entities with different properties have 
different flows through the network, for example). 
 
Simulation objects – any building blocks of the simulation tool that affect the state 
of the system – sources, sinks, servers or processors, queues, objects for combining 
or uncombining entities, objects for changing entity properties, event generators. 
 
Material flow – connections between all objects from or to which entities can move. 
In this case, it is necessary to carefully determine the conditions for redirection from 
individual objects to successors. 
 
Input intensities – the example given at the beginning of the chapter is just one of 
the options for modeling inputs. When modeling inputs from real systems, we can 
use: 
 
− Deterministic values – in systems where quantities and times are well-defined 

(e.g. train schedules, meeting schedules, etc.). 
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− Dynamic arrivals – input loads can depend on various factors such as the 
number of vehicles during rush hour. 

− Fitting to statistical distributions – when we have appropriate data available, 
input loads can be modeled by fitting to statistical distributions. 

− Historical data – where we have records of events in the systems (e.g. MES 
systems), we can perform an analysis by fitting to statistical distributions. 

− Expert estimates – in the absence of records, the assessment of the behavior of 
individual building blocks can be estimated based on the empirical assessments 
of experts. 

− Random values – randomness is a key element of simulations. In arrival 
modeling, random values are used within appropriate ranges or random values 
are generated according to appropriate distributions. 

− Sensitivity analysis - input parameters can be varied to assess how the system 
behaves under different initial settings under certain assumptions.  

− Service speeds – obtaining service speeds is like input intensities. It is often 
possible to obtain service speeds from knowledge of process durations such as 
production machine specifications, transport speeds, etc.  

 
Regardless of which approach is used, it is necessary to carefully examine all selected 
parameters (model validation) depending on the modeled system. 
 
2.4 Random values 
 
The generation of random values is one of the fundamental concepts in simulations, 
which is why we dedicate a chapter to it. Generating a random number (L’Ecuyer, 
2007) is a mathematically simple operation, but if approached incorrectly, it can lead 
to the appearance of patterns. The appearance of patterns in the generation of 
random numbers can lead to inappropriate behavior of the simulation, as unwanted 
dependencies may appear in the simulation flow, which would otherwise not be 
expected in a real system. 
 
Computer systems for generating random values use pseudo-random number 
generators, where the calculation of the random value is performed by a function 
with an input variable. An example of a simple linear congruence generator is given 
by the formula: 
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𝑋𝑋𝑛𝑛+1 = (𝑎𝑎𝑋𝑋𝑛𝑛 + 𝑐𝑐)%𝑚𝑚                          (4) 
 
Here they represent: 
 
𝑋𝑋𝑛𝑛- generator seed, 
𝑎𝑎 – multiplier – determines the period and quality of randomness, 
𝑐𝑐 – increment – sequence shift for greater variety of generated numbers, 
𝑚𝑚 – divisor – determines the range of generated numbers. 
 
The properties of the sequence of random numbers generated by such a generator 
depend on the choice of given parameters. The purpose of generators is to create as 
much entropy or unpredictability of states as possible, so the choice of seed is also 
important. When using the same seed, the function will always generate the same 
sequence of pseudo-random values. Depending on the needs, this may be desirable, 
such as when implementing different configurations with the same initial inputs or 
for verification. In most cases, however, it is desirable to disperse the random values 
as much as possible. In such cases, it makes sense to choose the generator seed as 
randomly as possible, for example from the current processor time when generating 
the random value. A linear congruence generator generates integers on the interval 
[0,𝑚𝑚 − 1], but often the generation of real numbers on the interval [0,1], is desired, 
mainly for the purpose of normalizing the values. For this purpose, the new number 
is divided by 𝑚𝑚. 
 
In modeling most real-world problems, the intensity of arrivals occurs randomly, 
but this randomness can usually be limited. The intensity of arrivals is thus often 
modeled by distributions where the arrivals are independent and follow each other 
at equal intervals on average. Modeling of real-world random processes is often done 
using the Poisson distribution: 
 

𝑃𝑃(𝑋𝑋 = 𝑘𝑘) = (𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆)
𝑘𝑘!

                          (5) 

 
where (𝑃𝑃(𝑋𝑋 = 𝑘𝑘) is the probability of occurrence of k events, 𝜆𝜆 is the average 
intensity of arrivals in the time interval, and 𝑘𝑘 is the number of events for which we 
want to find the probability. The Poisson distribution is useful in describing events 
such as: 
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− modeling customer arrivals to a store over a certain period of time, 
− analysis of the number of production defects, 
− forecasting the number of accidents on a section within a time period, 
− arrivals of e-mail messages. 
 
Modeling of input flows or service speeds is performed by fitting to statistical 
distributions (Johnson, 1987), such as Poisson or normal. These can be determined 
using statistical tests, histogram shape estimation, least squares, and other 
approaches. Once the process distributions are known, they can be used to generate 
random events that follow the same statistical characteristics as the systems under 
study. 
 
An example of calculating randomly generated values according to a Poisson 
distribution with mean 𝜆𝜆 is shown in the following procedure: 
 

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆) 
𝐿𝐿 =  𝑒𝑒−𝜆𝜆 
𝑘𝑘 ← 0 
𝑝𝑝 ← 1 
𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 (𝑝𝑝 > 𝐿𝐿) do 
𝑘𝑘 ← 𝑘𝑘 + 1 
𝑝𝑝 = 𝑝𝑝 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() 
end 
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑘𝑘 

 
Pseudocode 1: Poisson random value generator 

 
3 Simulation example 
 
For a simulation example, let's take a store where customers enter, search for 
products for different lengths of time, and finally purchase them at the checkout. 
Let's define the system properties: 
 

− 5 customers enter on average per minute, 
− number of cashiers: 5, 
− average purchase duration: 15 min, 
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− the transaction at the checkout takes an average of 5 minutes.  
 
According to Kendall's notation, a basic server system could be described by: 
 

𝑀𝑀/𝑀𝑀/5/30/3000/𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹             (6) 
 
assuming exponential customer arrivals and service, 5 cash registers, an estimated 
store capacity of 30 customers, and a total number of customers rounded to 3000 
(estimated for one business day). We choose FIFO as the serving strategy, meaning 
that customers are served according to their arrival (and purchase) time. 
 
The input parameter here represents the average arrival time between two 
consecutive customers. Assuming that customer arrivals are a Poisson process, we 
can model random arrival times as follows: 
 

𝑡𝑡𝑖𝑖 = −ln𝑟𝑟𝑟𝑟𝑟𝑟()
𝜆𝜆

                           (7) 

 
Table 1: Example of randomly determined arrivals according to an exponential distribution 

 
 Random time [s] Next arrival [s] 

1 0,010422473 0,625348364 
2 0,44356782 27,23941755 
3 0,047033142 30,06140609 
4 0,561568412 63,7555108 
5 0,416494108 88,74515728 
6 0,083158277 93,73465391 
7 0,023527478 95,14630261 
8 0,052567808 98,30037111 
9 0,130142537 106,1089233 
10 0,055501926 109,4390389 
11 0,010422473 144,9275279 
12 0,44356782 152,8945772 
 … … 

                           Source: own 
 
The given simulation example can be analyzed with server systems with queues, but 
the complexity increases with each added element. Therefore, it is advisable to use 
appropriate simulation tools for such problems. Simulation tools cannot be expected 
to produce simulation results that are completely consistent with theoretical 
calculations due to rounding errors and randomness, but with a well-designed 
simulation model, the results should come close to theoretical calculations. 
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From the given simulation example, we can quickly see that the system is not 
sustainable; with an average number of 5 customers per minute and 5 cash registers 
with a service speed of 5 minutes. The shopping time here represents an example 
that customers perform simultaneously. If we were to use Kendall's notation to 
describe only this part, we could describe it as a process, which can be simplified as: 
 

𝑀𝑀/𝑀𝑀/∞                            (8) 
 
because when shopping, each customer makes their own purchase and does not 
even need to enter the queue. Therefore, this segment can be considered unlimited 
(each customer has their own immediately available server). Customer arrivals 
represent arrivals as generated, and for the service speed, we consider an average of 
15 minutes per customer according to the given parameters. After making a 
purchase, customers enter the queue (or queues in front of individual cash registers). 
In a concrete simulation, we should of course take into account various factors, such 
as working hours, breaks and snacks, loads at different times during the day, etc. 
 
The presented example can be modeled in simulation tools (Figure 5.3) and avoids 
the multitude of calculations involved in increasing the complexity of server systems 
with queues. 
 

 
 

Figure 5.3: Trade simulation model in FlexSim 
Source: own. 
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Since the given example is unstable (constantly growing queue and constant 
occupancy of the cash registers), let's check how we could change the system to be 
sustainable. We can mainly use two approaches. We can add additional cash registers 
or replace them with faster ones. For this scenario, we leave all settings and 
characteristics the same, only we speed up the cash registers by a factor of 5 (still 
according to an exponential distribution). 
 
The goal of each simulation is to determine the capabilities of the modeled system, 
which includes various characteristics. In this case, we focus on the size of the queue 
(Figure 2.4) and the waiting times in it (Figure 2.5) and the utilization of the cash 
registers (Figure 2.6). 
 

 
 

Figure 2.4: Queue length 
Source: own. 

 
 

Figure 2.5: Waiting times in the queue 
Source: own. 

  

 
 

Figure 2.6: Cash register utilization 
Source: own. 

 

 
The simulation results show a (relatively) stable system with changed characteristics, 
as we do not have constantly increasing queues and waiting times. In simulations of 
complex systems, it is often necessary to find solutions that avoid bottlenecks and 
unused resources. 
 
7 Conclusion 
 
The presented example shows only a fraction of the capabilities that simulations 
offer. The great usefulness of simulations is especially evident in the study of 
complex systems, where seemingly unrelated parameters are involved. Thus, 
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simulations are used in logistics, finance, information, production, or in fact any 
related field. In the field of logistics, simulations represent a cost-effective approach 
to the analysis of production processes, transport routes and routing, traffic patterns, 
etc. By changing the parameters of the simulation or simulation scenarios, it is 
possible to observe complex systems from different perspectives, which enables 
effective decision-making based on rational analyses. 
 
Performing simulations allows a cost-effective approach to the analysis of complex 
systems without the need to interrupt processes. In today's technological systems, 
there is an increasing integration of various solutions, from ERP, MES, PLC, 
SCADA systems and others. While such systems mainly record and can also largely 
manage processes, simulation represents an alternative option for optimization by 
comparing alternatives and supporting decision-making. Recently, digital twins have 
come to the fore, providing a comprehensive insight into various company 
processes. Digital twins capture the events of a company's processes in real time 
from sensors, machines, devices and other sources (Internet of Things) and build a 
virtual representation based on them. Simulations performed on a virtual image of a 
real system provide a deeper insight into operations and business and represent 
added value in business decision-making at all levels. 
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